Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Local Texture Descriptors for the Assessment of Differences in Diffusion Magnetic Resonance Imaging of the Brain

Thomsen, Felix Sebastian LeoIcon ; Delrieux, Claudio AugustoIcon ; de Luis Garcia, Rodrigo
Fecha de publicación: 11/2016
Editorial: Springer
Revista: International Journal of Computer Assisted Radiology and Surgery
ISSN: 1861-6410
e-ISSN: 1861-6429
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Purpose: Descriptors extracted from magnetic resonance imaging (MRI)of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single voxel unit, but neighborhood-based texture measures can also be applied. In this work we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. Methods: We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation, and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls (HC), patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer´s disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. Results: The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI vs. moderate AD and mild vs. moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. Conclusions: The local operators applied here enhance the identification and localization of areas of the brain, where cognitive impairment takes place, and thus indicate them as promising extensions in diffusion MRI group studies.
Palabras clave: Local Texture , White Matter , Alzheimer'S Disease , Diffusion Tensor Imaging
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.932Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/42761
URL: http://link.springer.com/article/10.1007%2Fs11548-016-1505-1
DOI: http://dx.doi.org/10.1007/s11548-016-1505-1
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis Garcia, Rodrigo; Local Texture Descriptors for the Assessment of Differences in Diffusion Magnetic Resonance Imaging of the Brain; Springer; International Journal of Computer Assisted Radiology and Surgery; 12; 3; 11-2016; 389-398
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES