Artículo
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
Fecha de publicación:
03/2015
Editorial:
Elsevier Science
Revista:
Computational Statistics and Data Analysis
ISSN:
0167-9473
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.
Palabras clave:
Linear Model
,
Robust Estimator
,
High Efficiency
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-274
Compartir
Altmétricas