Artículo
An application of the augmented ε-constraint method to design a municipal sorted waste collection system
Fecha de publicación:
03/2017
Editorial:
Growing Science
Revista:
Decision Science Letters
ISSN:
1929-5804
e-ISSN:
1929-5812
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The separation at the source of Municipal Solid Waste (MSW) is an initiative that facilitates the subsequent recycling work and contributes to palliate the negative impacts of the traditional unsorted collection system. This paper presents a multi-objective integer linear programming model of the determination of the optimal location of assorted waste bins in an urban area. We consider, jointly, the objectives of minimizing the investment cost and the average distance from the dwellings to the bins. The model was applied in simulated instances of an Argentinian medium-size city, contributing to the transition from the current door-to-door based system to a community bins system. To solve this problem, we apply both the weighting method, which has been used to solve similar problems in the literature, and a novel version of the augmented ε-constraint method (AUGMECON2). The results over simulated scenarios show that, in general, AUGMECON2 has a better performance, yielding a larger number of efficient solutions at lower computation times.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NORDESTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Rossit, Diego Gabriel; Tohmé, Fernando Abel; Frutos, Mariano; Broz, Diego Ricardo; An application of the augmented ε-constraint method to design a municipal sorted waste collection system; Growing Science; Decision Science Letters; 6; 4; 3-2017; 323-336
Compartir
Altmétricas