Mostrar el registro sencillo del ítem

dc.contributor.author
Aon, Miguel Antonio  
dc.contributor.author
Stanley, Brian Alan  
dc.contributor.author
Sivakumaran, Vidhya  
dc.contributor.author
Kembro, Jackelyn Melissa  
dc.contributor.author
O'Rourke, Brian  
dc.contributor.author
Paolocci, Nazareno  
dc.contributor.author
Cortassa, Sonia  
dc.date.available
2018-04-19T14:13:58Z  
dc.date.issued
2012-06  
dc.identifier.citation
Aon, Miguel Antonio; Stanley, Brian Alan; Sivakumaran, Vidhya; Kembro, Jackelyn Melissa; O'Rourke, Brian; et al.; Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study; Rockefeller University Press; Journal Of General Physiology; 139; 6; 6-2012; 479-491  
dc.identifier.issn
0022-1295  
dc.identifier.uri
http://hdl.handle.net/11336/42623  
dc.description.abstract
The net emission of hydrogen peroxide (H2O2) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig. As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H2O2 emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H2O2 emission as a percentage of the total O2 consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively. A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H2O2 emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H2O2 overload, they relieve each other until complete saturation, when maximal ROS emission occurs. Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H2O2 emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H2O2 emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Rockefeller University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Glutathione System  
dc.subject
Thioredoxin System  
dc.subject
Ros  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-10T14:04:41Z  
dc.identifier.eissn
1540-7748  
dc.journal.volume
139  
dc.journal.number
6  
dc.journal.pagination
479-491  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Aon, Miguel Antonio. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Stanley, Brian Alan. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Sivakumaran, Vidhya. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Kembro, Jackelyn Melissa. University Johns Hopkins; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: O'Rourke, Brian. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Paolocci, Nazareno. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Cortassa, Sonia. University Johns Hopkins; Estados Unidos  
dc.journal.title
Journal Of General Physiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jgp.rupress.org/content/139/6/479  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1085/jgp.201210772