Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparative study of variational chaos indicators and ODEs' numerical integrators (review)

Darriba, Luciano ArielIcon ; Maffione, Nicolas PabloIcon ; Cincotta, Pablo MiguelIcon ; Giordano, Claudia MarcelaIcon
Fecha de publicación: 10/2012
Editorial: World Scientific
Revista: International Journal Of Bifurcation And Chaos
ISSN: 0218-1274
Idioma: Inglés
Tipo de recurso: Artículo publicado

Resumen

The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator.
Palabras clave: Chaos Indicators , Hamiltonian Sytems , Numerical Integrators , Odes , Variational Equations
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.809Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/42610
DOI: http://dx.doi.org/10.1142/S0218127412300339
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218127412300339
Colecciones
Articulos(IALP) [607]
Articulos de INST.DE ASTROFISICA LA PLATA
Citación
Darriba, Luciano Ariel; Maffione, Nicolas Pablo; Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Comparative study of variational chaos indicators and ODEs' numerical integrators (review); World Scientific; International Journal Of Bifurcation And Chaos; 22; 10-2012; 1-35
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 61
Descargas: 68

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES