Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MODIS environmental data to assess Chikungunya, Dengue and Zika diseases through Aedes (Stegomia) aegypti oviposition activity estimation

Estallo, Elizabet LiliaIcon ; Benitez, Elisabet MarinaIcon ; Lanfri, Mario Alberto; Scavuzzo, Carlos Marcelo; Almiron, Walter RicardoIcon
Fecha de publicación: 12/2016
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN: 1939-1404
e-ISSN: 2151-1535
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

Aedes aegypti is the main vector for Chikungunya, Dengue, and Zika viruses in Latin America and it represents a main threat for our region. Taking into account this situation, several efforts have been done to use remote sensing to support public health decision making. Moderate resolution imaging spectroradiometer (MODIS) sensor provides moderate-resolution remote sensing products; therefore, we explore the application of MODIS products to vector-borne disease problems in Argentina. We develop temporal forecasting models of Ae. aegypti oviposition, and we include its validation and its application to the 2016 Dengue outbreak. Temporal series (10/2005 to 09/2007) from MODIS products of normalized difference vegetation index and diurnal land surface temperature were built. Two linear regression models were developed: model 1 which uses environmental variables with time lag and model 2 uses environmental variables without time lags. Model 2 was the best model (AIC = 112) with high correlation (r = 0.88, p < 0.05) between observed and predicted data. We can suggest that MODIS products could be a good tool for estimating both Ae. aegypti oviposition activity and risks for Ae. aegypti-borne diseases. That statement is also supported by model results for 2016 when a dengue outbreak that started unusually earlier this season. If such activity could be forecast by a model based on remote sensing data, then a potential outbreak could be predicted.
Palabras clave: Diseases , Environmental Factors , Epidemiology , Forecasting , Image Processing , Image Sensors
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 600.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/42412
URL: http://ieeexplore.ieee.org/document/7576620/?reload=true
DOI: http://dx.doi.org/10.1109/JSTARS.2016.2604577
Colecciones
Articulos(IIBYT)
Articulos de INSTITUTO DE INVESTIGACIONES BIOLOGICAS Y TECNOLOGICAS
Citación
Estallo, Elizabet Lilia; Benitez, Elisabet Marina; Lanfri, Mario Alberto; Scavuzzo, Carlos Marcelo; Almiron, Walter Ricardo; MODIS environmental data to assess Chikungunya, Dengue and Zika diseases through Aedes (Stegomia) aegypti oviposition activity estimation; Institute of Electrical and Electronics Engineers; Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing; 9; 12; 12-2016; 5461-5466
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES