Mostrar el registro sencillo del ítem
dc.contributor.author
Alzamendi, Gabriel Alejandro
dc.contributor.author
Schlotthauer, Gaston
dc.contributor.author
Torres, Maria Eugenia
dc.date.available
2018-04-17T17:25:28Z
dc.date.issued
2015-11
dc.identifier.citation
Alzamendi, Gabriel Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 29; 6; 11-2015; 682-692
dc.identifier.issn
0892-1997
dc.identifier.uri
http://hdl.handle.net/11336/42313
dc.description.abstract
Objectives: The aim of this study was to propose a state space-based approach to model perturbed pitch period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs with structural analysis of stochastic time series and state space methods. Methods: The PPSs were obtained from a database composed of 53 healthy subjects. State space models were developed taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state estimates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods. Statistical tests were applied to objectively evaluate the performance of this method. Results: Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured short-term autoregressive dependencies. Conclusions: The present study demonstrated that the proposed approach is suitable for representing and analyzing real perturbed PPSs, also allowing to extract further information related to the phonation process.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Mosby-Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Perturbed Pitch Periods
dc.subject
Stochastic Pitch Model
dc.subject
Jitter
dc.subject
Structural Time-Series Analysis
dc.subject
State-Space Models
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
State-Space Approach to Structural Representation of Perturbed Pitch Period Sequences in Voice Signals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-17T13:49:24Z
dc.journal.volume
29
dc.journal.number
6
dc.journal.pagination
682-692
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal Of Voice : Official Journal Of The Voice Foundation.
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jvoice.2014.11.007
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0892199714002628
Archivos asociados