Artículo
The First-Order Hypothetical Logic of Proofs
Fecha de publicación:
09/2017
Editorial:
Oxford University Press
Revista:
Journal of Logic and Computation
ISSN:
0955-792X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [[t]]A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[[t]]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [[t]]A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.
Palabras clave:
First Order Logic of Proofs
,
Curry Howard
,
Normalization
,
Lambda Calculus
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-1066
Compartir
Altmétricas