Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands

Ferraro, Diego OmarIcon ; Ghersa, Claudio MarcoIcon
Fecha de publicación: 09/2013
Editorial: Elsevier
Revista: Crop Protection
ISSN: 0261-2194
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk (GRR) in Sorghum halepense (L.) Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1) herbicide usage, 2) crop rotation, 3) landscape characterization, 4) weed dispersal, and 5) mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values (lower than 0 and between 0 and 0.25) were represented in 5.5% and 21.5% of the cropping area, respectively. Intermediate GRR range (between 0.25 and 0.5) were assessed in 57.3% of the cropping area whilst the highest GRR range values (0.5e0.7) were represented in only 15.6% of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary process
Palabras clave: Fuzzy Logic , Glyhosate
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 674.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/4160
DOI: http://dx.doi.org/10.1016/j.cropro.2013.04.004
URL: http://www.sciencedirect.com/science/article/pii/S0261219413000926
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Articulos(OCA PQUE. CENTENARIO)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA PQUE. CENTENARIO
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Ferraro, Diego Omar; Ghersa, Claudio Marco; Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands; Elsevier; Crop Protection; 51; 9-2013; 32-39
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES