Mostrar el registro sencillo del ítem
dc.contributor.author
Hess, Laura J. T.
dc.contributor.author
Austin, Amy Theresa
dc.date.available
2016-02-11T19:55:21Z
dc.date.issued
2014-04
dc.identifier.citation
Hess, Laura J. T.; Austin, Amy Theresa; Pinus ponderosa alters nitrogen dynamics and diminishes the climate footprint in natural ecosystems of Patagonia; Wiley; Journal of Ecology; 102; 3; 4-2014; 610-621
dc.identifier.issn
0022-0477
dc.identifier.uri
http://hdl.handle.net/11336/4158
dc.description.abstract
1. Understanding climate effects on plant?soil interactions in terrestrial ecosystems remains challenging due to the fact that floristic composition covaries with climate, particularly along rainfall gradients. It is difficult to separate effects of precipitation per se from those mediated indirectly through changes in species composition. As such, afforestation (the intentional planting of woody species) in terrestrial ecosystems provides an ecological opportunity to assess the relative importance of climate and vegetation controls on ecosystem processes. 2. We investigated the impacts of 35 years of afforestation on ecosystem N dynamics, in ecosystems ranging from arid shrub-steppe to closed-canopy forest in Patagonia, Argentina. Sites of natural vegetation and adjacent sites planted with a single exotic species, Pinus ponderosa, were identified in five precipitation regimes along a continuous gradient of 250?2200 mm mean annual precipitation (MAP). We evaluated C and N parameters of vegetation and soil, as well as natural abundance of 13C and 15N in leaves, roots, ectomycorrhizae (EcM) and soils. 3. In natural vegetation, most leaf traits (%N, C:N ratios, leaf mass per area, d15N values) demonstrated strong significant relationships with MAP, while these relationships were nearly absent in afforested sites. In addition, the EcM of native southern beech and pine trees were significantly enriched in 15N relative to leaves at all sites where they were present. While soil C and N pools in both vegetation types increased with MAP, overall pool sizes were significantly reduced in afforested sites. 4. Synthesis. Observed relationships between leaf traits and precipitation in natural vegetation may be driven largely by shifts in species composition and plant?soil interactions, rather than direct effects of precipitation. Our results suggest that a change in the species composition of the dominant vegetation is sufficient to alter C and N cycling independently of climate constraints: pine afforestation homogenized N dynamics across sites spanning an order of magnitude of MAP. These results highlight the important control of ectomycorrhizal associations in affecting C and N dynamics. Additionally, they serve to demonstrate that altering natural species composition alone is sufficient to cause large, detectable impacts on N turnover independently of direct climate effects.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Plant-Soil Interactions
dc.subject
Temperate Forest
dc.subject
Stable Isotopes 15n
dc.subject
Nitrogen Cycling
dc.subject.classification
Ecología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Pinus ponderosa alters nitrogen dynamics and diminishes the climate footprint in natural ecosystems of Patagonia
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.journal.volume
102
dc.journal.number
3
dc.journal.pagination
610-621
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Hoboken
dc.description.fil
Fil: Hess, Laura J. T.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Stanford University. Department of Environmental Earth System Science; Estados Unidos
dc.description.fil
Fil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.journal.title
Journal of Ecology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12228/abstract
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/issn/0022-0477
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/DOI:10.1111/1365-2745.12228
Archivos asociados