Artículo
Quantum and classical complexity in coupled maps
Fecha de publicación:
12/2017
Editorial:
American Physical Society
Revista:
Physical Review E
ISSN:
2470-0053
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study a generic and paradigmatic two-degrees-of-freedom system consisting of two coupled perturbed cat maps with different types of dynamics. The Wigner separability entropy (WSE)—equivalent to the operator space entanglement entropy—and the classical separability entropy (CSE) are used as measures of complexity. For the case where both degrees of freedom are hyperbolic, the maps are classically ergodic and the WSE and the CSE behave similarly, growing to higher values than in the doubly elliptic case. However, when one map is elliptic and the other hyperbolic, the WSE reaches the same asymptotic value than that of the doubly hyperbolic case but at a much slower rate. The CSE only follows the WSE for a few map steps, revealing that classical dynamical features are not enough to explain complexity growth.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Bergamasco, Pablo D.; Carlo, Gabriel Gustavo; Rivas, Alejandro Mariano Fidel; Quantum and classical complexity in coupled maps; American Physical Society; Physical Review E; 96; 6; 12-2017; 621441-621446
Compartir
Altmétricas