Mostrar el registro sencillo del ítem

dc.contributor.author
Caiafa, Cesar Federico  
dc.contributor.author
Cichocki, Andrzej  
dc.date.available
2016-02-11T14:20:28Z  
dc.date.issued
2013-10-18  
dc.identifier.citation
Caiafa, Cesar Federico; Cichocki, Andrzej ; Multidimensional compressed sensing and their applications; Wiley; Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery; 3; 6; 18-10-2013; 355-380  
dc.identifier.issn
1942-4795  
dc.identifier.uri
http://hdl.handle.net/11336/4132  
dc.description.abstract
Compressed Sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially non-linear, demanding heavy computation load and large storage memory, especially in the case of multidimensional signals. Excellent review papers discussing CS state-of-the-art theory and algorithms already exist in the literature which mostly consider data sets in vector forms. In this article, we give an overview of existing techniques with special focus on the treatment of multidimensional signals (tensors). We discuss recent trends that exploit the natural multidimensional structure of signals (tensors) achieving simple and efficient CS algorithms. The Kronecker structure of dictionaries is emphasized and its equivalence to the Tucker tensor decomposition is exploited allowing us to use tensor tools and models for CS. Several examples based on real world multidimensional signals are presented illustrating common problems in signal processing such as: the recovery of signals from compressed measurements for MRI signals or for hyper-spectral imaging, and the tensor completion problem (multidimensional inpainting).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Compressed Sensing  
dc.subject
Sparse Representations  
dc.subject
Multidimensional Signals  
dc.subject
Multiway Arrays  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multidimensional compressed sensing and their applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
3  
dc.journal.number
6  
dc.journal.pagination
355-380  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hoboken  
dc.description.fil
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Cichocki, Andrzej . Laboratory for Advanced Brain Signal Processing; Polonia. Research Systems Institute; Polonia  
dc.journal.title
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/widm.1108/pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/widm.1108  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/issn/1942-4795