Mostrar el registro sencillo del ítem
dc.contributor.author
Nobre, F.D.
dc.contributor.author
Plastino, Ángel Ricardo

dc.date.available
2018-04-06T18:17:40Z
dc.date.issued
2017-08
dc.identifier.citation
Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-2462
dc.identifier.issn
0375-9601
dc.identifier.uri
http://hdl.handle.net/11336/41195
dc.description.abstract
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Classical Field Theory
dc.subject
Nonadditive Entropies
dc.subject
Nonextensive Thermostatistics
dc.subject
Nonlinear Schr&Amp;Ouml;Dinger Equations
dc.subject.classification
Astronomía

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A family of nonlinear Schrödinger equations admitting q-plane wave solutions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-06T14:10:08Z
dc.journal.volume
381
dc.journal.number
31
dc.journal.pagination
2457-2462
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; Brasil
dc.description.fil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
dc.journal.title
Physics Letters A

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physleta.2017.05.054
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117305315
Archivos asociados