Mostrar el registro sencillo del ítem

dc.contributor.author
Nobre, F.D.  
dc.contributor.author
Plastino, Ángel Ricardo  
dc.date.available
2018-04-06T18:17:40Z  
dc.date.issued
2017-08  
dc.identifier.citation
Nobre, F.D.; Plastino, Ángel Ricardo; A family of nonlinear Schrödinger equations admitting q-plane wave solutions; Elsevier Science; Physics Letters A; 381; 31; 8-2017; 2457-2462  
dc.identifier.issn
0375-9601  
dc.identifier.uri
http://hdl.handle.net/11336/41195  
dc.description.abstract
Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross– Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field ( x,t) (besides the usual one ( x,t)) must be introduced for consistency. The new field can be identified with ∗( x,t) only when q → 1. For q = 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields ( x,t) and ( x,t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by ( x,t) and ( x,t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Classical Field Theory  
dc.subject
Nonadditive Entropies  
dc.subject
Nonextensive Thermostatistics  
dc.subject
Nonlinear Schr&Amp;Ouml;Dinger Equations  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A family of nonlinear Schrödinger equations admitting q-plane wave solutions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-06T14:10:08Z  
dc.journal.volume
381  
dc.journal.number
31  
dc.journal.pagination
2457-2462  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Nobre, F.D.. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina  
dc.journal.title
Physics Letters A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physleta.2017.05.054  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960117305315