Show simple item record

dc.contributor.author Lionello, Diego Fernando
dc.contributor.author Steinberg, Paula Yael
dc.contributor.author Zalduendo, María Mercedes
dc.contributor.author Soler Illia, Galo Juan de Avila Arturo
dc.contributor.author Angelome, Paula Cecilia
dc.contributor.author Fuertes, María Cecilia
dc.date.available 2018-04-06T16:48:00Z
dc.date.issued 2017-09
dc.identifier.citation Lionello, Diego Fernando; Steinberg, Paula Yael; Zalduendo, María Mercedes; Soler Illia, Galo Juan de Avila Arturo; Angelome, Paula Cecilia; et al.; Structural and Mechanical Evolution of Mesoporous Films With Thermal Treatment: The Case of Brij 58 Templated Titania; American Chemical Society; Journal of Physical Chemistry C; 121; 40; 9-2017; 22576-22586
dc.identifier.issn 1932-7447
dc.identifier.uri http://hdl.handle.net/11336/41124
dc.description.abstract Mesoporous titania thin films (MTTFs) with well ordered cubic array of mesopores were synthesized on glass and silicon substrates using Brij 58 as a template. The effect of the thermal treatment and the substrate on the structural parameters (thickness, porosity, pore order, and crystallinity) and the mechanical properties of MTTFs were determined by electron microscopy, X-ray diffraction, Raman spectroscopy, 2D-small angle X-ray scattering, ellipsometric porosimetry, and nanoindentation. Clear differences in the mesostructural order evolution and crystallization behavior were observed as a function of the substrate and the thermal treatment. In particular, the anatase crystallization process occurs at lower temperatures for samples prepared on silicon when compared with samples prepared on glass, due to the balance between nanocrystals formation, mass diffusion, and Na+ migration from the substrate. As a consequence of such phenomena, the MTTFs mechanical properties are also dependent on the substrate. For samples prepared on glass the 325–350 °C range is the optimal annealing temperature to maximize the mechanical properties (E value of 45 GPa), while higher temperatures can be used for the Si supported oxides, to reach E values of 60 GPa. The obtained anatase crystal dimensions (below 4–5 nm) are restricted by the wall thickness, indicating the chosen thermal treatment prevents the mesoporous structure from collapsing even when the oxide presents thin walls and small pores, preserving high porosity and high porous ordering. As a consequence, the presented Brij 58 templated MTTFs exhibits smaller crystalline domains than analogous materials with thicker walls. Such properties could be exploited for applications in photocatalysis and titania-based solar cells.
dc.format application/pdf
dc.language.iso eng
dc.publisher American Chemical Society
dc.rights info:eu-repo/semantics/embargoedAccess
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject MESOPOROUS MATERIALS
dc.subject MECHANICAL PROPERTIES
dc.subject NANOINDENTATION
dc.subject.classification Recubrimientos y Películas
dc.subject.classification Ingeniería de los Materiales
dc.subject.classification INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification Nano-materiales
dc.subject.classification Nanotecnología
dc.subject.classification INGENIERÍAS Y TECNOLOGÍAS
dc.title Structural and Mechanical Evolution of Mesoporous Films With Thermal Treatment: The Case of Brij 58 Templated Titania
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2018-04-06T13:43:45Z
dc.journal.volume 121
dc.journal.number 40
dc.journal.pagination 22576-22586
dc.journal.pais Estados Unidos
dc.description.fil Fil: Lionello, Diego Fernando. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil Fil: Steinberg, Paula Yael. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil Fil: Zalduendo, María Mercedes. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil Fil: Angelome, Paula Cecilia. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil Fil: Fuertes, María Cecilia. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title Journal of Physical Chemistry C
dc.rights.embargoDate 2018-10-01
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.7b09054
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.7b09054
dc.conicet.fuente Crossref


Archivos asociados

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/embargoedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)