Artículo
Optimality & the linear substitution calculus
Fecha de publicación:
09/2017
Editorial:
Schloss Dagstuhl. Leibniz-Zentrum für Informatik
Revista:
Leibniz International Proceedings in Informatics, LIPIcs
ISSN:
1868-8969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We lift the theory of optimal reduction to a decomposition of the lambda calculus known as the Linear Substitution Calculus (LSC). LSC decomposes β-reduction into finer steps that manipulate substitutions in two distinctive ways: it uses context rules that allow substitutions to act "at a distance" and rewrites modulo a set of equations that allow substitutions to "float" in a term. We propose a notion of redex family obtained by adapting Lévy labels to support these two distinctive features. This is followed by a proof of the finite family developments theorem (FFD). We then apply FFD to prove an optimal reduction theorem for LSC. We also apply FFD to deduce additional novel properties of LSC, namely an algorithm for standardisation by selection and normalisation of a linear call-by-need reduction strategy. All results are proved in the axiomatic setting of Glauert and Khashidashvili´s Deterministic Residual Structures.
Palabras clave:
Explicit Substitutions
,
Lambda Calculus
,
Optimal Reduction
,
Rewriting
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Barenbaum, Pablo; Bonelli, Eduardo Augusto; Optimality & the linear substitution calculus; Schloss Dagstuhl. Leibniz-Zentrum für Informatik; Leibniz International Proceedings in Informatics, LIPIcs; 84; 9-2017; 1-16
Compartir
Altmétricas