Mostrar el registro sencillo del ítem

dc.contributor.author
Cingolani, Ana María  
dc.contributor.author
Renison, Daniel  
dc.contributor.author
Zak, Marcelo Román  
dc.contributor.author
Cabido, Marcelo Ruben  
dc.date.available
2018-04-06T14:55:13Z  
dc.date.issued
2004-12  
dc.identifier.citation
Cingolani, Ana María; Renison, Daniel; Zak, Marcelo Román; Cabido, Marcelo Ruben; Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units; Elsevier Science Inc; Remote Sensing of Environment; 92; 1; 12-2004; 84-97  
dc.identifier.issn
0034-4257  
dc.identifier.uri
http://hdl.handle.net/11336/41095  
dc.description.abstract
Three major problems are faced when mapping natural vegetation with mid-resolution satellite images using conventional supervised classification techniques: defining the adequate hierarchical level for mapping; defining discrete land cover units discernible by the satellite; and selecting representative training sites. In order to solve these problems, we developed an approach based on the: (1) definition of ecologically meaningful units as mosaics or repetitive combinations of structural types, (2) utilization of spectral information (indirectly) to define the units, (3) exploration of two alternative methods to classify the units once they are defined: the traditional, Maximum Likelihood method, which was enhanced by analyzing objective ways of selecting the best training sites, and an alternative method using Discriminant Functions directly obtained from the statistical analysis of signatures. The study was carried out in a heterogeneous mountain rangeland in central Argentina using Landsat data and 251 field sampling sites. On the basis of our analysis combining terrain information (a matrix of 251 stands×14 land cover attributes) and satellite data (a matrix of 251 stands×8 bands), we defined 8 land cover units (mosaics of structural types) for mapping, emphasizing the structural types which had stronger effects on reflectance. The comparison through field validation of both methods for mapping units showed that classification based on Discriminant Functions produced better results than the traditional Maximum Likelihood method (accuracy of 86% vs. 78%).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Conservation Planning  
dc.subject
Discriminant Functions  
dc.subject
Heterogeneous Areas  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-03T19:20:25Z  
dc.journal.volume
92  
dc.journal.number
1  
dc.journal.pagination
84-97  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.description.fil
Fil: Renison, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Zak, Marcelo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.description.fil
Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.journal.title
Remote Sensing of Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034425704001403  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.rse.2004.05.008