Mostrar el registro sencillo del ítem

dc.contributor.author
Guilera, Octavio Miguel  
dc.contributor.author
Sandor, Zs.  
dc.date.available
2018-04-06T13:42:48Z  
dc.date.issued
2017-04  
dc.identifier.citation
Guilera, Octavio Miguel; Sandor, Zs.; Giant planet formation at the pressure maxima of protoplanetary disks; EDP Sciences; Astronomy and Astrophysics; 604; 4-2017; A10  
dc.identifier.issn
0004-6361  
dc.identifier.uri
http://hdl.handle.net/11336/41049  
dc.description.abstract
Context. In the classical core-accretion planet-formation scenario, rapid inward migration and accretion timescales of kilometer sizeplanetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. On theother hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation,favoring the formation of massive cores.Aims. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary diskand their implications for the formation of massive cores as triggering a gaseous runaway accretion phase.Methods. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosityregion in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets isalso considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals, and thesurrounding gas.Results. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planetmigration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressuremaxima locations. However, our simulations also show that migration-trap locations and solid-material-accumulation locationsare not exactly at the same positions. Thus, a planet?s semi-major axis oscillations around zero torque locations predicted by MHDand HD simulations are needed for the planet to accrete all the available material accumulated at the pressure maxima.Conclusions. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferentiallocations for the formation and trap of massive cores.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
EDP Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Planets  
dc.subject
Gaseous Planets  
dc.subject
Protoplanetary Disks  
dc.subject
Satellites  
dc.subject
Formation of Planets  
dc.subject
Formation of Satellites  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Giant planet formation at the pressure maxima of protoplanetary disks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-26T14:39:03Z  
dc.journal.volume
604  
dc.journal.pagination
A10  
dc.journal.pais
Francia  
dc.description.fil
Fil: Guilera, Octavio Miguel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Sandor, Zs.. Department Of Astronomy, Eötvös Loránd University; Hungría  
dc.journal.title
Astronomy and Astrophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/10.1051/0004-6361/201629843  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/0004-6361/201629843