Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Metabolomic Serum Profiling Detects Early-Stage High-Grade Serous Ovarian Cancer in a Mouse Model

Jones, Christina M.; Monge, Maria EugeniaIcon ; Kim, Jaeyeon; Matzuk, Martin M.; Fernández, Facundo M.
Fecha de publicación: 01/2015
Editorial: American Chemical Society
Revista: Journal of Proteome Research
ISSN: 1535-3893
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica; Oncología

Resumen

Ovarian cancer is a deadly disease killing more than any other gynecologic cancer. Nonspecific symptoms, combined with a lack of early detection methods, contribute to late diagnosis and low five-year survival rates. High-grade serous carcinoma (HGSC) is the most common and deadliest subtype that results in 90% of ovarian cancer deaths. To investigate metabolic patterns for early detection of this deadly ovarian cancer, Dicer- Pten double knockout (DKO) mice that phenocopy many of the features of metastatic HGSC observed in women were studied. Using ultraperformance liquid chromatography−mass spectrometry (UPLC−MS), serum samples from 14 early-stage tumor (ET) DKO mice and 11 controls were analyzed in depth to screen for metabolic signatures capable of differentiating early-stage HGSC from controls. Iterative multivariate classification selected 18 metabolites that, when considered as a panel, yielded 100% accuracy, sensitivity, and specificity for classification. Altered metabolic pathways reflected in that panel included those of fatty acids, bile acids, glycerophospholipids, peptides, and some dietary phytochemicals. These alterations revealed impacts to cellular energy storage and membrane stability, as well as changes in defenses against oxidative stress, shedding new light on the metabolic alterations associated with early ovarian cancer stages.
Palabras clave: Ovarian Cancer , Mouse Models , Untargeted Metabolomics , Mass Spectrometry , Liquid Chromatography , Biomarkers , Early Detection
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.786Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/4099
URL: http://pubs.acs.org/doi/abs/10.1021/pr5009948
DOI: http://dx.doi.org/DOI:10.1021/pr5009948
Colecciones
Articulos(CIBION)
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Citación
Jones, Christina M.; Monge, Maria Eugenia; Kim, Jaeyeon; Matzuk, Martin M.; Fernández, Facundo M. ; Metabolomic Serum Profiling Detects Early-Stage High-Grade Serous Ovarian Cancer in a Mouse Model; American Chemical Society; Journal of Proteome Research; 14; 2; 1-2015; 917-927
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES