Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Adding Recognition Discriminability Index to the Delayed Recall Is Useful to Predict Conversion from Mild Cognitive Impairment to Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative

Russo, María Julieta; Campos, Jorge; Vázquez, Silvia; Sevlever, Gustavo; Allegri, Ricardo FranciscoIcon
Fecha de publicación: 03/2017
Editorial: Frontiers Research Foundation
Revista: Frontiers in Aging Neuroscience
e-ISSN: 1663-4365
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Medicina Critica y de Emergencia

Resumen

Background: Ongoing research is focusing on the identification of those individuals with mild cognitive impairment (MCI) who are most likely to convert to Alzheimer's disease (AD). We investigated whether recognition memory tasks in combination with delayed recall measure of episodic memory and CSF biomarkers can predict MCI to AD conversion at 24-month follow-up. Methods: A total of 397 amnestic-MCI subjects from Alzheimer's disease Neuroimaging Initiative were included. Logistic regression modeling was done to assess the predictive value of all RAVLT measures, risk factors such as age, sex, education, APOE genotype, and CSF biomarkers for progression to AD. Estimating adjusted odds ratios was used to determine which variables would produce an optimal predictive model, and whether adding tests of interaction between the RAVLT Delayed Recall and recognition measures (traditional score and d-prime) would improve prediction of the conversion from a-MCI to AD. Results: 112 (28.2%) subjects developed dementia and 285 (71.8%) subjects did not. Of the all included variables, CSF Aβ1-42 levels, RAVLT Delayed Recall, and the combination of RAVLT Delayed Recall and d-prime were predictive of progression to AD (χ2 = 38.23, df = 14, p < 0.001). Conclusions: The combination of RAVLT Delayed Recall and d-prime measures may be predictor of conversion from MCI to AD in the ADNI cohort, especially in combination with amyloid biomarkers. A predictive model to help identify individuals at-risk for dementia should include not only traditional episodic memory measures (delayed recall or recognition), but also additional variables (d-prime) that allow the homogenization of the assessment procedures in the diagnosis of MCI.
Palabras clave: Alzheimer'S Disease , Disease Progression , Memory , Mild Cognitive Impairment , Recognition Discriminability , Signal Detection Theory
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 207.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/40823
DOI: http://dx.doi.org/10.3389/fnagi.2017.00046
URL: https://www.frontiersin.org/articles/10.3389/fnagi.2017.00046/full
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Russo, María Julieta; Campos, Jorge; Vázquez, Silvia; Sevlever, Gustavo; Allegri, Ricardo Francisco; Adding Recognition Discriminability Index to the Delayed Recall Is Useful to Predict Conversion from Mild Cognitive Impairment to Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative; Frontiers Research Foundation; Frontiers in Aging Neuroscience; 9; MAR; 3-2017; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES