Mostrar el registro sencillo del ítem

dc.contributor.author
Usselman, Robert J.  
dc.contributor.author
Chavarriaga, Cristina  
dc.contributor.author
Castello, Pablo Raul  
dc.contributor.author
Procopio, Maria  
dc.contributor.author
Ritz, Thorsten  
dc.contributor.author
Dratz, Edward A.  
dc.contributor.author
Singel, David J.  
dc.contributor.author
Martino, Carlos F.  
dc.date.available
2018-04-03T22:27:03Z  
dc.date.issued
2016-12  
dc.identifier.citation
Usselman, Robert J.; Chavarriaga, Cristina; Castello, Pablo Raul; Procopio, Maria; Ritz, Thorsten; et al.; The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics; Nature Publishing Group; Scientific Reports; 6; 12-2016; 1-6; 38543  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/40630  
dc.description.abstract
Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2 ·-) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Quantum Biology  
dc.subject
Reactive Oxygen Species  
dc.subject
Cellular Bioenergetics  
dc.subject
Magnetic Fields  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-03T18:23:16Z  
dc.journal.volume
6  
dc.journal.pagination
1-6; 38543  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Usselman, Robert J.. State University of Montana; Estados Unidos  
dc.description.fil
Fil: Chavarriaga, Cristina. Florida Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Castello, Pablo Raul. Universidad de Belgrano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Procopio, Maria. University of California at Irvine; Estados Unidos  
dc.description.fil
Fil: Ritz, Thorsten. University of California at Irvine; Estados Unidos  
dc.description.fil
Fil: Dratz, Edward A.. State University of Montana; Estados Unidos  
dc.description.fil
Fil: Singel, David J.. State University of Montana; Estados Unidos  
dc.description.fil
Fil: Martino, Carlos F.. Florida Institute of Technology; Estados Unidos  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/srep38543  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep38543