Mostrar el registro sencillo del ítem

dc.contributor.author
Pallarola, Diego Andres  
dc.contributor.author
Platzman, Ilia  
dc.contributor.author
Bochen, Alexander  
dc.contributor.author
Cavalcanti Adam, Elisabetta A.  
dc.contributor.author
Axmann, Markus  
dc.contributor.author
Kessler, Horst  
dc.contributor.author
Geiger, Benjamin  
dc.contributor.author
Spatz, Joachim P.  
dc.date.available
2018-04-03T21:12:26Z  
dc.date.issued
2017-01  
dc.identifier.citation
Pallarola, Diego Andres; Platzman, Ilia; Bochen, Alexander; Cavalcanti Adam, Elisabetta A.; Axmann, Markus; et al.; Focal adhesion stabilization by enhanced integrin-cRGD binding affinity; De Gruyter; BioNanoMaterials; 18; 1-2; 1-2017; 1-13; 20160014  
dc.identifier.issn
2193-0651  
dc.identifier.uri
http://hdl.handle.net/11336/40604  
dc.description.abstract
In this study we investigate the impact of ligand presentation by various molecular spacers on integrin-based focal adhesion formation. Gold nanoparticles (AuNPs) arranged in hexagonal patterns were biofunctionalized with the same ligand head group, cyclic Arg-Gly-Asp [c(-RGDfX-)], but with different molecular spacers, each of which couples the head group to the gold. Aminohexanoic acid, polyethylene glycol (PEG) and polyproline spacers were used to vary the distance between the binding motif and the substrate, and thus the presentation of integrin binding on anchoring points. Adherent cells plated on nanopatterned surfaces with polyproline spacers for peptide immobilization could tolerate larger ligand spacing (162 nm) for focal adhesion formation, in comparison to cells on surfaces with PEG (110 nm) or aminohexanoic acid (62 nm) spacers. Due to the rigidity of the polyproline spacer, enhanced access to the ligand-binding site upon integrin-cRGD complex formation increases the probability of rebinding and decreases unbinding, as measured by fluorescence recovery after photobleaching (FRAP) analysis, compared to the analogues with aminohexanoic acid or PEGcontaining spacers. These findings indicate that focaladhesion formation may not only be stabilized upon tight integrin clustering, but also by tuning the efficiencyof the exposure of the cRGD-based ligand to the integrin extracellular domains. Our studies clearly highlightthe importance of ligand spatial presentation for regulating adhesion-dependent cell behavior, and provide asound approach for studying cell signaling processes on nanometer-scale, engineered bioactive surfaces underchemical stimuli of varying intensities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Biointerfaces  
dc.subject
Cell Adhesion  
dc.subject
Cyclic Rgd  
dc.subject
Integrins  
dc.subject
Ligand Affinity  
dc.subject
Polyproline Spacer  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Focal adhesion stabilization by enhanced integrin-cRGD binding affinity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-03T18:42:03Z  
dc.identifier.eissn
2193-066X  
dc.journal.volume
18  
dc.journal.number
1-2  
dc.journal.pagination
1-13; 20160014  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Pallarola, Diego Andres. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Platzman, Ilia. Max-Planck-Institute for Medical Research; Alemania  
dc.description.fil
Fil: Bochen, Alexander. Technische Universitat Munchen; Alemania  
dc.description.fil
Fil: Cavalcanti Adam, Elisabetta A.. Max-Planck-Institute for Medical Research; Alemania  
dc.description.fil
Fil: Axmann, Markus. Max-Planck-Institute for Medical Research; Alemania  
dc.description.fil
Fil: Kessler, Horst. Technische Universitat Munchen; Alemania  
dc.description.fil
Fil: Geiger, Benjamin. Weizmann Institute of Science. Department of Molecular Cell Biology; Israel  
dc.description.fil
Fil: Spatz, Joachim P.. Max-Planck-Institute for Medical Research; Alemania  
dc.journal.title
BioNanoMaterials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/biomat.2017.18.issue-1-2/bnm-2016-0014/bnm-2016-0014.xml  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/bnm-2016-0014