Mostrar el registro sencillo del ítem

dc.contributor.author
Gonçalves Dias Diniz, Paulo Henrique  
dc.contributor.author
Pistonesi, Marcelo Fabian  
dc.contributor.author
Álvarez, Mónica Beatriz  
dc.contributor.author
Fernández Band, Beatriz Susana  
dc.contributor.author
Ugulino de Araújo, Mário César  
dc.date.available
2018-04-03T13:57:28Z  
dc.date.issued
2015-03  
dc.identifier.citation
Gonçalves Dias Diniz, Paulo Henrique; Pistonesi, Marcelo Fabian; Álvarez, Mónica Beatriz; Fernández Band, Beatriz Susana; Ugulino de Araújo, Mário César; Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA); Academic Press Inc Elsevier Science; Journal Of Food Composition And Analysis; 39; 3-2015; 103-110  
dc.identifier.issn
0889-1575  
dc.identifier.uri
http://hdl.handle.net/11336/40474  
dc.description.abstract
In this study, several possible approaches for simultaneous discrimination of teas based on a linear discriminant analysis with variables selected by the successive projections algorithm (SPA-LDA), featuring selection from the chemical composition according to variety (black or green tea) and geographical origin (Argentina or Sri Lanka), are explored. Chemical composition (moisture, ash, caffeine, fluoride, polyphenols, and 15 elements from both tea leaves and infusions) was used as input data for identification of the differentiating characteristics of tea samples. Thus, a strategy that allows tea discrimination using a reduced number of chemical parameters was developed. SIMCA (softindependent modeling of class analogy) and PLS-DA (partial least squares-discriminant analysis) were used along with SPA-LDA for comparison. The elemental fingerprint (chemical signature) can be used for identifying the variety and origin of the tea, and SPA-LDA provided the most successful result (100% correct classification), despite having selected just three chemical parameters (namely K, Al, and Mg). The result is extremely positive from the viewpoint of chemical analyses, because quantifications made using fewer elements naturally provide simpler, faster and less expensive methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Camellia Sinensis  
dc.subject
Tea Leaves  
dc.subject
Tea Infusions  
dc.subject
Food Composition  
dc.subject
Food Analysis  
dc.subject
Elemental Fingerprint  
dc.subject
Classification  
dc.subject
Spa-Lda Feature Selection  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA)  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-28T16:54:53Z  
dc.journal.volume
39  
dc.journal.pagination
103-110  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gonçalves Dias Diniz, Paulo Henrique. Universidade Estadual Da Paraí­ba; Brasil  
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Álvarez, Mónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Ugulino de Araújo, Mário César. Universidade Federal Da Paraíba; Brasil  
dc.journal.title
Journal Of Food Composition And Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfca.2014.11.012  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0889157514002130