Artículo
Non-conformal Repellers and the Continuity of Pressure for Matrix Cocycles
Fecha de publicación:
08/2014
Editorial:
Birkhauser Verlag Ag
Revista:
Geometric and Functional Analysis
ISSN:
1016-443X
e-ISSN:
1420-8970
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The pressure function P(A, s) plays a fundamental role in the calculation of the dimension of "typical" self-affine sets, where A = (A 1,...,A k) is the family of linear mappings in the corresponding generating iterated function system. We prove that this function depends continuously on A. As a consequence, we show that the dimension of "typical" self-affine sets is a continuous function of the defining maps. This resolves a folklore open problem in the community of fractal geometry. Furthermore we extend the continuity result to more general sub-additive pressure functions generated by the norm of matrix products or generalized singular value functions for matrix cocycles, and obtain applications on the continuity of equilibrium measures and the Lyapunov spectrum of matrix cocycles. © 2014 Springer Basel.
Palabras clave:
Topological Pressure
,
Non-Conformal Repellers
,
Thermodynamic Formalism
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Feng, De Jun; Shmerkin, Pablo Sebastian; Non-conformal Repellers and the Continuity of Pressure for Matrix Cocycles; Birkhauser Verlag Ag; Geometric and Functional Analysis; 24; 4; 8-2014; 1101-1128
Compartir
Altmétricas