Mostrar el registro sencillo del ítem

dc.contributor.author
Mroginski, Javier Luis  
dc.contributor.author
Beneyto, Pablo Alejandro  
dc.contributor.author
Gutierrez, Guillermo J  
dc.contributor.author
Di Rado, Hector Ariel  
dc.date.available
2018-03-20T21:27:31Z  
dc.date.issued
2016-01  
dc.identifier.citation
Mroginski, Javier Luis; Beneyto, Pablo Alejandro; Gutierrez, Guillermo J; Di Rado, Hector Ariel; A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis; Emerald; Multidiscipline Modeling in Materials and Structures; 12; 2; 1-2016; 423-435  
dc.identifier.uri
http://hdl.handle.net/11336/39457  
dc.description.abstract
Purpose-There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach-The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings-The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value-The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Emerald  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
3d Bars Structure  
dc.subject
Finite Element Method  
dc.subject
Genetic Algorithm  
dc.subject
Multiobjective Optimization  
dc.subject
Sensitivity Analysis  
dc.subject.classification
Genética y Herencia  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A selective genetic algorithm for multiobjective optimization of cross sections in 3D trussed structures based on a spatial sensitivity analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-09T18:44:21Z  
dc.identifier.eissn
1573-6105  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
423-435  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Mroginski, Javier Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina  
dc.description.fil
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste; Argentina  
dc.description.fil
Fil: Gutierrez, Guillermo J. Universidad Nacional del Nordeste; Argentina  
dc.description.fil
Fil: Di Rado, Hector Ariel. Universidad Nacional del Nordeste; Argentina  
dc.journal.title
Multidiscipline Modeling in Materials and Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1108/MMMS-08-2015-0048  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.emeraldinsight.com/doi/abs/10.1108/MMMS-08-2015-0048