Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Changing dynamics: Time-varying autoregressive models using generalized additive modeling

Bringmann, Laura F.; Hamaker, Ellen L.; Vigo, Daniel EduardoIcon ; Aubert, André; Borsboom, Denny; Tuerlinckx, Francis
Fecha de publicación: 09/2017
Editorial: American Psychological Association
Revista: Psychological Methods
ISSN: 1082-989X
e-ISSN: 1939-1463
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Inmunología

Resumen

In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology.
Palabras clave: Time Series , Nonstationarity , Autoregressive Models , Generalized Additive Models , Splines
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 467.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/39349
DOI: http://dx.doi.org/10.1037/met0000085
URL: http://psycnet.apa.org/doiLanding?doi=10.1037%2Fmet0000085
Colecciones
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Citación
Bringmann, Laura F.; Hamaker, Ellen L.; Vigo, Daniel Eduardo; Aubert, André; Borsboom, Denny; et al.; Changing dynamics: Time-varying autoregressive models using generalized additive modeling; American Psychological Association; Psychological Methods; 22; 3; 9-2017; 409-425
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES