Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández, Érica Soledad
dc.contributor.author
Bogado, Verónica Soledad
dc.contributor.author
Salomone, Hector Enrique
dc.contributor.author
Chiotti, Omar Juan Alfredo
dc.date.available
2018-03-15T20:38:50Z
dc.date.issued
2016-08
dc.identifier.citation
Fernández, Érica Soledad; Bogado, Verónica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; Framework for modelling and simulating the supply process monitoring to detect and predict disruptive events; Elsevier Science; Computers In Industry; 80; 8-2016; 30-42
dc.identifier.issn
0166-3615
dc.identifier.uri
http://hdl.handle.net/11336/39029
dc.description.abstract
Disruptive events that take place during supply process execution produce negative effects that propagate throughout a supply chain. Event management systems for supply chains have emerged to provide functionality for monitoring schedules, managing disruption, and repairing schedules affected by a disruptive event. A Web service that provides a schedule monitoring functionality for supply chain event management was developed. This paper provides a framework to allow enterprises that hire this service to develop simulation models of monitoring processes and evaluate their ability to detect and anticipate disruptive events. The framework, based on discrete event simulation, is implemented in a library that can be used for developing and testing monitoring processes by means of a friendly interface. A marine freight transport process was used as a case study to show how a supply process and its environment can be modelled and simulated by using the library. Simulation results show the ability of this approach to anticipate disruptive events and identify critical stages of a supply process in order to prevent disruptive events.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Disruptive Event
dc.subject
Monitoring System
dc.subject
Scem System
dc.subject
Simulation
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Framework for modelling and simulating the supply process monitoring to detect and predict disruptive events
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-08T19:06:53Z
dc.journal.volume
80
dc.journal.pagination
30-42
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Fernández, Érica Soledad. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Bogado, Verónica Soledad. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Computers In Industry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166361516300604
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compind.2016.04.002
Archivos asociados