Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández, Érica Soledad  
dc.contributor.author
Bogado, Verónica Soledad  
dc.contributor.author
Salomone, Hector Enrique  
dc.contributor.author
Chiotti, Omar Juan Alfredo  
dc.date.available
2018-03-15T20:38:50Z  
dc.date.issued
2016-08  
dc.identifier.citation
Fernández, Érica Soledad; Bogado, Verónica Soledad; Salomone, Hector Enrique; Chiotti, Omar Juan Alfredo; Framework for modelling and simulating the supply process monitoring to detect and predict disruptive events; Elsevier Science; Computers In Industry; 80; 8-2016; 30-42  
dc.identifier.issn
0166-3615  
dc.identifier.uri
http://hdl.handle.net/11336/39029  
dc.description.abstract
Disruptive events that take place during supply process execution produce negative effects that propagate throughout a supply chain. Event management systems for supply chains have emerged to provide functionality for monitoring schedules, managing disruption, and repairing schedules affected by a disruptive event. A Web service that provides a schedule monitoring functionality for supply chain event management was developed. This paper provides a framework to allow enterprises that hire this service to develop simulation models of monitoring processes and evaluate their ability to detect and anticipate disruptive events. The framework, based on discrete event simulation, is implemented in a library that can be used for developing and testing monitoring processes by means of a friendly interface. A marine freight transport process was used as a case study to show how a supply process and its environment can be modelled and simulated by using the library. Simulation results show the ability of this approach to anticipate disruptive events and identify critical stages of a supply process in order to prevent disruptive events.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Disruptive Event  
dc.subject
Monitoring System  
dc.subject
Scem System  
dc.subject
Simulation  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Framework for modelling and simulating the supply process monitoring to detect and predict disruptive events  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-08T19:06:53Z  
dc.journal.volume
80  
dc.journal.pagination
30-42  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Fernández, Érica Soledad. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Bogado, Verónica Soledad. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Salomone, Hector Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Computers In Industry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166361516300604  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compind.2016.04.002