Mostrar el registro sencillo del ítem

dc.contributor.author
Medina González, Sergio  
dc.contributor.author
Pozo, Carlos  
dc.contributor.author
Corsano, Gabriela  
dc.contributor.author
Guillén Gosálbez, Gonzalo  
dc.contributor.author
Espuña, Antonio  
dc.date.available
2018-03-15T20:36:53Z  
dc.date.issued
2017-03  
dc.identifier.citation
Medina González, Sergio; Pozo, Carlos; Corsano, Gabriela; Guillén Gosálbez, Gonzalo; Espuña, Antonio; Using Pareto filters to support risk management in optimization under uncertainty: Application to the strategic planning of chemical supply chains; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 3-2017; 236-255  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/39028  
dc.description.abstract
Optimization under uncertainty has attracted recently an increasing interest in the process systems engineering literature. The inclusion of uncertainties in an optimization problem inevitably leads to the need to manage the associated risk in order to control the variability of the objective function in the uncertain parameters space. So far, risk management methods have focused on optimizing a single risk metric along with the expected performance. In this work we propose an alternative approach that can handle several risk metrics simultaneously. First, a multi-objective stochastic model containing a set of risk metrics is formulated. This model is then solved efficiently using a tailored decomposition strategy inspired on the Sample Average Approximation. After a normalization step, the resulting solutions are assessed using Pareto filters, which identify solutions showing better performance in the uncertain parameters space. The capabilities and benefits of our approach are illustrated through a design and planning supply chain case study.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Financial Risk Metrics  
dc.subject
Multi-Objective  
dc.subject
Pareto Filters  
dc.subject
Uncertainty  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Using Pareto filters to support risk management in optimization under uncertainty: Application to the strategic planning of chemical supply chains  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-08T19:05:47Z  
dc.journal.volume
98  
dc.journal.pagination
236-255  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Medina González, Sergio. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Pozo, Carlos. Imperial College London; Reino Unido  
dc.description.fil
Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Guillén Gosálbez, Gonzalo. Universitat Rovira I Virgili; España. Imperial College London; Reino Unido  
dc.description.fil
Fil: Espuña, Antonio. Universidad Politecnica de Catalunya; España  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compchemeng.2016.10.008  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135416303246