Mostrar el registro sencillo del ítem
dc.contributor.author
Medina González, Sergio
dc.contributor.author
Pozo, Carlos
dc.contributor.author
Corsano, Gabriela
dc.contributor.author
Guillén Gosálbez, Gonzalo
dc.contributor.author
Espuña, Antonio
dc.date.available
2018-03-15T20:36:53Z
dc.date.issued
2017-03
dc.identifier.citation
Medina González, Sergio; Pozo, Carlos; Corsano, Gabriela; Guillén Gosálbez, Gonzalo; Espuña, Antonio; Using Pareto filters to support risk management in optimization under uncertainty: Application to the strategic planning of chemical supply chains; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 98; 3-2017; 236-255
dc.identifier.issn
0098-1354
dc.identifier.uri
http://hdl.handle.net/11336/39028
dc.description.abstract
Optimization under uncertainty has attracted recently an increasing interest in the process systems engineering literature. The inclusion of uncertainties in an optimization problem inevitably leads to the need to manage the associated risk in order to control the variability of the objective function in the uncertain parameters space. So far, risk management methods have focused on optimizing a single risk metric along with the expected performance. In this work we propose an alternative approach that can handle several risk metrics simultaneously. First, a multi-objective stochastic model containing a set of risk metrics is formulated. This model is then solved efficiently using a tailored decomposition strategy inspired on the Sample Average Approximation. After a normalization step, the resulting solutions are assessed using Pareto filters, which identify solutions showing better performance in the uncertain parameters space. The capabilities and benefits of our approach are illustrated through a design and planning supply chain case study.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Financial Risk Metrics
dc.subject
Multi-Objective
dc.subject
Pareto Filters
dc.subject
Uncertainty
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Using Pareto filters to support risk management in optimization under uncertainty: Application to the strategic planning of chemical supply chains
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-08T19:05:47Z
dc.journal.volume
98
dc.journal.pagination
236-255
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Medina González, Sergio. Universidad Politecnica de Catalunya; España
dc.description.fil
Fil: Pozo, Carlos. Imperial College London; Reino Unido
dc.description.fil
Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Guillén Gosálbez, Gonzalo. Universitat Rovira I Virgili; España. Imperial College London; Reino Unido
dc.description.fil
Fil: Espuña, Antonio. Universidad Politecnica de Catalunya; España
dc.journal.title
Computers and Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compchemeng.2016.10.008
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135416303246
Archivos asociados