Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MicroRNA discovery in the human parasite Echinococcus multilocularis from genome-wide data

Kamenetzky, LauraIcon ; Stegmayer, GeorginaIcon ; Maldonado, Lucas LucianoIcon ; Macchiaroli, NataliaIcon ; Yones, Cristian ArielIcon ; Milone, Diego HumbertoIcon
Fecha de publicación: 04/2016
Editorial: Academic Press Inc Elsevier Science
Revista: Genomics
ISSN: 0888-7543
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática; Parasitología

Resumen

The cestode parasite Echinococcus multilocularis is the aetiological agent of alveolar echinococcosis, responsible for considerable human morbidity and mortality. This disease is a worldwide zoonosis of major public health concern and is considered a neglected disease by the World Health Organization. The complete genome of E. multilocularis has been recently sequenced and assembled in a collaborative effort between the Wellcome Trust Sanger Institute and our group, with the main aim of analyzing protein-coding genes. These analyses suggested that approximately 10% of E. multilocularis genome is composed of protein-coding regions. This shows there is still a vast proportion of the genome that needs to be explored, including non-coding RNAs such as small RNAs (sRNAs). Within this class of small regulatory RNAs, microRNAs (miRNAs) can be found, which have been identified in many different organisms ranging from viruses to higher eukaryotes. MiRNAs are a key regulation mechanism of gene expression at post-transcriptional level and play important roles in biological processes such as development, proliferation, cell differentiation and metabolism in animals and plants. In spite of this, identification of miRNAs directly from genome-wide data only is still a very challenging task. There are many miRNAs that remain unidentified due to the lack of either sequence information of particular phylums or appropriate algorithms to identify novel miRNAs. The motivation for this work is the discovery of new miRNAs in E. multilocularis based on non-target genomic data only, in order to obtain useful information from the currently available unexplored data. In this work, we present the discovery of new pre-miRNAs in the E. multilocularis genome through a novel approach based on machine learning. We have extracted the most commonly used structural features from the folded sequences of the parasite genome: triplets, minimum free energy and sequence length. These features have been used to train a novel deep architecture of self-organizing maps (SOMs). This model can be trained with a high class imbalance and without the artificial definition of a negative class. We discovered 886 pre-miRNA candidates within the E. multilocularis genome-wide data. After that, experimental validation by small RNA-seq analysis clearly showed 23 pre-miRNA candidates with a pattern compatible with miRNA biogenesis, indicating them as high confidence miRNAs. We discovered new pre-miRNA candidates in E. multilocularis using non-target genomic data only. Predictions were meaningful using only sequence data, with no need of RNA-seq data or target analysis for prediction. Furthermore, the methodology employed can be easily adapted and applied on any draft genomes, which are actually the most interesting ones since most non-model organisms have this kind of status and carry real biological and sanitary relevance.
Palabras clave: Machine Learning , Self Organizing Map , Microrna , Echinococcus Multilocularis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 917.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/38958
URL: http://www.sciencedirect.com/science/article/pii/S0888754316300234
DOI: http://dx.doi.org/10.1016/j.ygeno.2016.04.002
Colecciones
Articulos(IMPAM)
Articulos de INSTITUTO DE INVESTIGACIONES EN MICROBIOLOGIA Y PARASITOLOGIA MEDICA
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Kamenetzky, Laura; Stegmayer, Georgina; Maldonado, Lucas Luciano; Macchiaroli, Natalia; Yones, Cristian Ariel; et al.; MicroRNA discovery in the human parasite Echinococcus multilocularis from genome-wide data; Academic Press Inc Elsevier Science; Genomics; 107; 6; 4-2016; 274-280
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES