Mostrar el registro sencillo del ítem

dc.contributor.author
Muzzio, Juan Carlos  
dc.contributor.author
Mosquera, Mercedes Elisa  
dc.date.available
2018-03-15T17:50:25Z  
dc.date.issued
2004-12  
dc.identifier.citation
Muzzio, Juan Carlos; Mosquera, Mercedes Elisa; Spatial structure of regular and chaotics orbits in selfconsistent models of galactic satellites; Springer; Celestial Mechanics & Dynamical Astronomy; 88; 4; 12-2004; 379-396  
dc.identifier.issn
0923-2958  
dc.identifier.uri
http://hdl.handle.net/11336/38948  
dc.description.abstract
In several previous papers we had investigated the orbits of the stars that make up galactic satellites, finding that many of them were chaotic. Most of the models studied in those works were not self-consistent, the single exception being the Heggie and Ramamani (1995) models; nevertheless, these ones are built from a distribution function that depends on the energy (actually, the Jacobi integral) only, what makes them rather special. Here we built up two self-consistent models of galactic satellites, freezed theirs potential in order to have smooth and stationary fields, and investigated the spatial structure of orbits whose initial positions and velocities were those of the bodies in the self-consistent models. We distinguished between partially chaotic (only one non-zero Lyapunov exponent) and fully chaotic (two non-zero Lyapunov exponents) orbits and showed that, as could be expected from the fact that the former obey an additional local isolating integral, besides the global Jacobi integral, they have different spatial distributions. Moreover, since Lyapunov exponent are computed over finite time intervals, their values reflect the properties of the part of the chaotic sea they are navigating during those intervals and, as a result, when the chaotic orbits are separated in groups of low- and high-valued exponents, significant differences can also be recognized between their spatial distributions. The structure of the satellites can, therefore, be understood as a superposition of several separate subsystems, with different degrees of concentration and triaxiality, that can be recognized from the analysis of the Lyapunov exponents of their orbits.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Chaotic Motion  
dc.subject
Galactic Satellites  
dc.subject
Stellar Orbits  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatial structure of regular and chaotics orbits in selfconsistent models of galactic satellites  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-06T15:12:29Z  
dc.journal.volume
88  
dc.journal.number
4  
dc.journal.pagination
379-396  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Muzzio, Juan Carlos. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Mosquera, Mercedes Elisa. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.journal.title
Celestial Mechanics & Dynamical Astronomy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1023/B:CELE.0000023411.87573.7a