Mostrar el registro sencillo del ítem

dc.contributor.author
Cappa, Eduardo Pablo  
dc.contributor.author
Varona, Luis  
dc.date.available
2016-01-27T20:05:40Z  
dc.date.issued
2013-12  
dc.identifier.citation
Cappa, Eduardo Pablo; Varona, Luis; An assessor-specific Bayesian multi-threshold mixed model for analyzing ordered categorical traits in tree breeding; Springer Heidelberg; Tree Genetics & Genomes; 9; 6; 12-2013; 1423-1434  
dc.identifier.issn
1614-2942  
dc.identifier.uri
http://hdl.handle.net/11336/3863  
dc.description.abstract
Many traits of biological interest in tree breeding are assessed using more than two ordered discrete categories. These scores have a more or less arbitrary and subjective assignment by the assessors, which could lead to a strong departure from the Gaussian distribution. Different assessors may also use different regions of the available scale. This study describes the use of the multi-threshold mixed model proposed by Varona et al. (2009), which allows different thresholds for different assessors on an underlying Gaussian distribution. This method was applied to a six-point score for stem-quality in an open-pollinated progeny trial of Prosopis alba Griseb. Four mixed models were used: 1) a linear model with observed score (LMM); 2) a linear model with transformed "normal scores" (LMM_NS); 3) a threshold model (TMM); and 4) an assessor-specific multi-threshold model (MTMM). Dispersion parameters were estimated using Bayesian techniques via the Gibbs sampling with a data augmentation step. The proposed MTMM produced higher posterior mean heritabilities (0.096) than the commonly used LMM (0.077). Posterior mean heritabilities from LMM_NS (0.094) and TMM (0.097) were comparable to those obtained using MTMM; however, MTMM yielded slightly more precise estimates than TMM. Although correlations of the estimated breeding values were high between different models (from 0.88 to 0.99), the heterogeneity in the estimated posterior means of the thresholds between the three assessors caused notable changes in the top 10 families between TMM and MTMM. The proposed model is helpful in fitting subjective ordered categorical traits assessed by different assessors in tree breeding.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ordered Categorical Traits  
dc.subject
Assessor  
dc.subject
Multi-Threshold Mixed Model  
dc.subject
Bayesian Inference  
dc.subject.classification
Genética y Herencia  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Silvicultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
An assessor-specific Bayesian multi-threshold mixed model for analyzing ordered categorical traits in tree breeding  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
9  
dc.journal.number
6  
dc.journal.pagination
1423-1434  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Varona, Luis. Universidad de Zaragoza. Unidad de Genética Cuantitativa y Mejora Animal; España  
dc.journal.title
Tree Genetics & Genomes  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11295-013-0648-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s11295-013-0648-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/issn/1614-2942