Artículo
Complementarity relation for irreversible processes near steady states
Fecha de publicación:
24/06/2013
Editorial:
Elsevier
Revista:
Physica A: Statistical and Theoretical Physics
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A relation giving a minimum for the irreversible work in quasi-equilibrium processes was derived by Sekimoto et al. [K. Sekimoto, S. Sasa, J. Phys. Soc. Japan 66 (1997) 3326] in the framework of stochastic energetics. This relation can also be written as a type of “uncertainty principle” in such a way that the precise determination of the Helmholtz free energy through the observation of the work 〈W〉 requires an indefinitely large experimental time Δt. In the present article, we extend this relation to the case of quasi-steady processes by using the concept of non-equilibrium Helmholtz free energy. We give a formulation of the second law for these processes that extends that presented by Sekimoto [K. Sekimoto, Prog. Theoret. Phys. Suppl. No. 130 (1998) 17] by a term of the first order in the inverse of the experimental time. As an application of our results, two possible experimental situations are considered: stretching of a RNA molecule and the drag of a dipolar particle in the presence of a gradient of electric force.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Santini, E; Carusela, María Florencia; Izquierdo, E. D.; Complementarity relation for irreversible processes near steady states; Elsevier; Physica A: Statistical and Theoretical Physics; 392; 20; 24-6-2013; 4856-4867
Compartir
Altmétricas