Mostrar el registro sencillo del ítem

dc.contributor.author
Olivera, Ana Carolina  
dc.contributor.author
García-Nieto, J.M.  
dc.contributor.author
Alba, E.  
dc.date.available
2018-03-09T17:43:14Z  
dc.date.issued
2015-04  
dc.identifier.citation
Olivera, Ana Carolina; García-Nieto, J.M.; Alba, E.; Reducing vehicle emissions and fuel consumption in the city by using particle swarm optimization; Springer; Applied Intelligence; 42; 3; 4-2015; 389-405  
dc.identifier.issn
0924-669X  
dc.identifier.uri
http://hdl.handle.net/11336/38413  
dc.description.abstract
Nowadays, the increasing levels of polluting emissions and fuel consumption of the road traffic in modern cities directly affect air quality, the city economy, and especially the health of citizens. Therefore, improving the efficiency of the traffic flow is a mandatory task in order to mitigate such critical problems. In this article, a Swarm Intelligence approach is proposed for the optimal scheduling of traffic lights timing programs in metropolitan areas. By doing so, the traffic flow of vehicles can be improved with the final goal global target of reducing their fuel consumption and gas emissions (CO and NOx). In this work we optimize the traffic lights timing programs and analyze their effect in pollution by following the standard HBEFA as the traffic emission model. Specifically, we focus on two large and heterogeneous urban scenarios located in the cities of Malaga and Seville (in Spain). When compared to the traffic lights timing programs designed by experts close to real ones, the proposed strategy obtains significant reductions in terms of the emission rates (23.3 % CO and 29.3 % NOx) and the total fuel consumption.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hbefa Traffic Emission Model  
dc.subject
Sumo Microscopic Simulator of Urban Mobility  
dc.subject
Traffic Lights Timing  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reducing vehicle emissions and fuel consumption in the city by using particle swarm optimization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-09T14:44:22Z  
dc.identifier.eissn
1573-7497  
dc.journal.volume
42  
dc.journal.number
3  
dc.journal.pagination
389-405  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: García-Nieto, J.M.. Universidad de Málaga; España  
dc.description.fil
Fil: Alba, E.. Universidad de Málaga; España  
dc.journal.title
Applied Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10489-014-0604-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10489-014-0604-3