Mostrar el registro sencillo del ítem

dc.contributor.author
Blanco, Pablo Javier  
dc.contributor.author
Sánchez, Pablo Javier  
dc.contributor.author
De Souza Neto, Eduardo Alberto  
dc.contributor.author
Feijóo, Raúl Antonino  
dc.date.available
2018-03-08T18:37:53Z  
dc.date.issued
2016-08  
dc.identifier.citation
Blanco, Pablo Javier; Sánchez, Pablo Javier; De Souza Neto, Eduardo Alberto; Feijóo, Raúl Antonino; The method of multiscale virtual power for the derivation of a second order mechanical model; Elsevier Science; Mechanics of Materials; 99; 8-2016; 53-67  
dc.identifier.issn
0167-6636  
dc.identifier.uri
http://hdl.handle.net/11336/38284  
dc.description.abstract
A multi-scale model, based on the concept of Representative Volume Element (RVE), is proposed linking a classical continuum at RVE level to a macro-scale strain-gradient theory. The multi-scale model accounts for the effect of body forces and inertia phenomena occurring at the micro-scale. The Method of Multiscale Virtual Power recently proposed by the authors drives the construction of the model. In this context, the coupling between the macro- and micro-scale kinematical descriptors is defined by means of kinematical insertion and homogenisation operators, carefully postulated to ensure kinematical conservation in the scale transition. Micro-scale equilibrium equations as well as formulae for the homogenised (macro-scale) force- and stress-like quantities are naturally derived from the Principle of Multiscale Virtual Power - a variational extension of the Hill-Mandel Principle that enforces the balance of the virtual powers of both scales. As an additional contribution, further insight into the theory is gained with the enforcement of the RVE kinematical constraints by means of Lagrange multipliers. This approach unveils the reactive nature of homogenised force- and stress-like quantities and allows the characterisation of the homogenised stress-like quantities exclusively in terms of RVE boundary data in a straightforward manner.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Hill-Mandel Principle  
dc.subject
Homogenisation  
dc.subject
Principle of Multiscale Virtual Power  
dc.subject
Rve  
dc.subject
Second Order Theory  
dc.subject
Strain Gradient Theory  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
The method of multiscale virtual power for the derivation of a second order mechanical model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-07T15:54:04Z  
dc.journal.volume
99  
dc.journal.pagination
53-67  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Blanco, Pablo Javier. Ministério da Ciência, Tecnologia, Inovações e Comunicações. Laboratório Nacional de Computação Científica; Brasil  
dc.description.fil
Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: De Souza Neto, Eduardo Alberto. Swansea University; Reino Unido  
dc.description.fil
Fil: Feijóo, Raúl Antonino. Ministério da Ciência, Tecnologia, Inovações e Comunicações. Laboratório Nacional de Computação Científica; Brasil  
dc.journal.title
Mechanics of Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mechmat.2016.05.003  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167663616300400