Mostrar el registro sencillo del ítem
dc.contributor.author
Idelsohn, Sergio Rodolfo
dc.contributor.author
Gimenez, Juan Marcelo
dc.contributor.author
Nigro, Norberto Marcelo
dc.date.available
2018-03-07T21:41:29Z
dc.date.issued
2017-12
dc.identifier.citation
Idelsohn, Sergio Rodolfo; Gimenez, Juan Marcelo; Nigro, Norberto Marcelo; Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 12-2017; 1-20
dc.identifier.issn
0271-2091
dc.identifier.uri
http://hdl.handle.net/11336/38244
dc.description.abstract
In a previous paper, the authors presented an elemental enriched space to be used in a finite-element framework (EFEM) capable of reproducing kinks and jumps in an unknown function using a fixed mesh in which the jumps and kinks do not coincide with the interelement boundaries. In this previous publication, only scalar transport problems were solved (thermal problems). In the present work, these ideas are generalized to vectorial unknowns, in particular, the incompressible Navier-Stokes equations for multifluid flows presenting internal moving interfaces. The advantage of the EFEM compared with global enrichment is the significant reduction in computing time when the internal interface is moving. In the EFEM, the matrix to be solved at each time step has not only the same amount of degrees of freedom (DOFs) but also the same connectivity between the DOFs. This frozen matrix graph enormously improves the efficiency of the solver. Another characteristic of the elemental enriched space presented here is that it allows a linear variation of the jump, thus improving the convergence rate, compared with other enriched spaces that have a constant variation of the jump. Furthermore, the implementation in any existing finite-element code is extremely easy with the version presented here because the new shape functions are based on the usual finite-element method shape functions for triangles or tetrahedrals, and once the internal DOFs are statically condensed, the resulting elements have exactly the same number of unknowns as the nonenriched finite elements.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Cfd
dc.subject
Discontinuous Fields
dc.subject
Efem
dc.subject
Enriched Fe Spaces
dc.subject
Incompressible Fluid Flows
dc.subject
Internal Interfaces
dc.subject
Multifluids
dc.subject
Navier-Stokes Equations
dc.subject.classification
Física de los Fluidos y Plasma
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-07T15:55:40Z
dc.identifier.eissn
1097-0363
dc.journal.pagination
1-20
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Institució Catalana de Recerca i Estudis Avancats; España. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE); España
dc.description.fil
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.journal.title
International Journal For Numerical Methods In Fluids
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/fld.4477
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/fld.4477/abstract
Archivos asociados