Mostrar el registro sencillo del ítem

dc.contributor.author
Gustavo Méndez, Carlos  
dc.contributor.author
Podestá, Juan Manuel  
dc.contributor.author
Lloberas Valls, Oriol  
dc.contributor.author
Toro, Sebastian  
dc.contributor.author
Huespe, Alfredo Edmundo  
dc.contributor.author
Oliver, Javier  
dc.date.available
2018-03-07T21:34:38Z  
dc.date.issued
2017-03  
dc.identifier.citation
Gustavo Méndez, Carlos; Podestá, Juan Manuel; Lloberas Valls, Oriol; Toro, Sebastian; Huespe, Alfredo Edmundo; et al.; Computational material design for acoustic cloaking; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 112; 10; 3-2017; 1353-1380  
dc.identifier.issn
0029-5981  
dc.identifier.uri
http://hdl.handle.net/11336/38237  
dc.description.abstract
A topology optimization technique based on the topological derivative and the level set function is utilized to design/synthesize the microstructure of a pentamode material for an acoustic cloaking device. The technique provides a microstructure consisting of a honeycomb lattice composed of needle-like and joint members. The resulting metamaterial shows a highly anisotropic elastic response with effective properties displaying a ratio between bulk and shear moduli of almost three orders of magnitude. Furthermore, in accordance with previous works in the literature, it can be asserted that this kind of microstructure can be realistically fabricated. The adoption of a topology optimization technique as a tool for the inverse design of metamaterials with applications to acoustic cloaking problems is one contribution of this paper. However, the most important achievement refers to the analysis and discussion revealing the key role of the external shape of the prescribed domain where the optimization problem is posed. The efficiency of the designed microstructure is measured by comparing the scattering wave fields generated by acoustic plane waves impinging on bare and cloaked bodies. Copyright © 2017 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Transformation Acoustic Applications  
dc.subject
Topological Derivative  
dc.subject
Extremal Material  
dc.subject
Topology Optimization  
dc.title
Computational material design for acoustic cloaking  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-07T15:54:09Z  
dc.journal.volume
112  
dc.journal.number
10  
dc.journal.pagination
1353-1380  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Gustavo Méndez, Carlos. Cimne-latinoamérica; Argentina  
dc.description.fil
Fil: Podestá, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste; Argentina  
dc.description.fil
Fil: Lloberas Valls, Oriol. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Toro, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Universidad Politecnica de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Oliver, Javier. Universidad Politecnica de Catalunya; España  
dc.journal.title
International Journal for Numerical Methods in Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/nme.5560