Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Elemental Enriched Spaces for the Treatment of Weak and Strong Discontinuous Fields

Idelsohn, Sergio RodolfoIcon ; Gimenez, Juan MarceloIcon ; Marti, Julio; Nigro, Norberto MarceloIcon
Fecha de publicación: 01/2017
Editorial: Elsevier Science Sa
Revista: Computer Methods in Applied Mechanics and Engineering
ISSN: 0045-7825
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

This paper presents a finite element that incorporates weak, strong and both weak plus strong discontinuities with linear interpolations of the unknown jumps for the modeling of internal interfaces. The new enriched space is built by subdividing each triangular or tetrahedral element in several standard linear sub-elements. The new degrees of freedom coming from the assembly of the sub-elements can be eliminated by static condensation at the element level, resulting in two main advantages: first, an elemental enrichment instead of a nodal one, which presents an important reduction of the computing time when the internal interface is moving all around the domain and second, an efficient implementation involving minor modifications allowing to reuse existing finite element codes. The equations for the internal interface are constructed by imposing the local equilibrium between the stresses in the bulk of the element and the tractions driving the cohesive law, with the proper equilibrium operators to account for the linear kinematics of the discontinuity. To improve the continuity of the unknowns on both sides of the elements on which a static condensation is done, a contour integral has been added. These contour integrals named inter-elemental forces can be interpreted as a “do nothing” boundary condition (Coppola-Owen and Codina, 2011) published in another context, or as the usage of weighting functions that ensure convergence of the approach as proposed by J.C. Simo (Simo and Rifai, 1990). A series of numerical tests for scalar unknowns as a simple representation of more general numerical simulations are presented to illustrate the performance of the enriched elemental space.
Palabras clave: Cracks , Discontinuous Fields , Efem , Enriched Fe Spaces , Internal Interfaces , Multi-Materials
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 7.938Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/38225
URL: https://www.sciencedirect.com/science/article/pii/S0045782516312804
DOI: http://dx.doi.org/10.1016/j.cma.2016.09.048
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Idelsohn, Sergio Rodolfo; Gimenez, Juan Marcelo; Marti, Julio; Nigro, Norberto Marcelo; Elemental Enriched Spaces for the Treatment of Weak and Strong Discontinuous Fields; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 313; 1-2017; 535-559
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES