Mostrar el registro sencillo del ítem

dc.contributor.author
Bre, Facundo  
dc.contributor.author
Fachinotti, Victor Daniel  
dc.date.available
2018-03-07T21:06:35Z  
dc.date.issued
2017-11  
dc.identifier.citation
Bre, Facundo; Fachinotti, Victor Daniel; A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings; Elsevier Science Sa; Energy and Buildings; 154; 11-2017; 283-294  
dc.identifier.issn
0378-7788  
dc.identifier.uri
http://hdl.handle.net/11336/38219  
dc.description.abstract
In the last years, multi-objective optimization techniques became into one of the main challenges of the building energy efficiency area. The objective of this paper is to develop and validate a computational code for multi-objective building performance optimization by linking an evolutionary algorithm and a building simulation software in a powerful cluster. A sophisticated version of the multi-objective Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was implemented in Python code to determine the optimal building design, which allows working with categorical and discrete variables, and the objectives were evaluated using the building energy simulation software EnergyPlus. NSGA-II was implemented to run in a high-performance cluster for the parallel computing of the fitness of each population (set of possible designs). In this work, the strengths of the proposed method were demonstrated by its application to the optimal design of a typical single-family house, located in the Argentine Littoral region. This house has some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). The most influential design variables like roof types, external and internal wall types, solar orientation, solar absorptance, size, type, and windows shading of this house among others were studied in two complex cases of 108 and 1016 possibilities to obtain the best trade-off (Pareto front) between heating and cooling performance. Finally, a decision-making method was applied to select one configuration of the Pareto front. Optimal simulation results for the study cases indicated that is possible to improve up to 95% the thermal comfort in naturally ventilated rooms and up to 82% energy performance in air-conditioned rooms of the building with respect to the original configuration by using a design that takes simultaneous advantage of passive strategies like thermal inertia and natural ventilation. The methodology was proved to give a robust and powerful tool to design efficient dwellings reducing the optimization time from almost 12 days to 4.4 h.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Energy Consumption  
dc.subject
High-Performance Cluster Application  
dc.subject
Hybrid Ventilation  
dc.subject
Multi-Objective Optimization  
dc.subject
Nsga-Ii  
dc.subject
Thermal Comfort  
dc.subject.classification
Otras Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-07T15:55:32Z  
dc.journal.volume
154  
dc.journal.pagination
283-294  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina  
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.journal.title
Energy and Buildings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778817318042  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enbuild.2017.08.002