Mostrar el registro sencillo del ítem
dc.contributor.author
Bre, Facundo
dc.contributor.author
Fachinotti, Victor Daniel
dc.date.available
2018-03-07T21:06:35Z
dc.date.issued
2017-11
dc.identifier.citation
Bre, Facundo; Fachinotti, Victor Daniel; A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings; Elsevier Science Sa; Energy and Buildings; 154; 11-2017; 283-294
dc.identifier.issn
0378-7788
dc.identifier.uri
http://hdl.handle.net/11336/38219
dc.description.abstract
In the last years, multi-objective optimization techniques became into one of the main challenges of the building energy efficiency area. The objective of this paper is to develop and validate a computational code for multi-objective building performance optimization by linking an evolutionary algorithm and a building simulation software in a powerful cluster. A sophisticated version of the multi-objective Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was implemented in Python code to determine the optimal building design, which allows working with categorical and discrete variables, and the objectives were evaluated using the building energy simulation software EnergyPlus. NSGA-II was implemented to run in a high-performance cluster for the parallel computing of the fitness of each population (set of possible designs). In this work, the strengths of the proposed method were demonstrated by its application to the optimal design of a typical single-family house, located in the Argentine Littoral region. This house has some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). The most influential design variables like roof types, external and internal wall types, solar orientation, solar absorptance, size, type, and windows shading of this house among others were studied in two complex cases of 108 and 1016 possibilities to obtain the best trade-off (Pareto front) between heating and cooling performance. Finally, a decision-making method was applied to select one configuration of the Pareto front. Optimal simulation results for the study cases indicated that is possible to improve up to 95% the thermal comfort in naturally ventilated rooms and up to 82% energy performance in air-conditioned rooms of the building with respect to the original configuration by using a design that takes simultaneous advantage of passive strategies like thermal inertia and natural ventilation. The methodology was proved to give a robust and powerful tool to design efficient dwellings reducing the optimization time from almost 12 days to 4.4 h.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Sa
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Energy Consumption
dc.subject
High-Performance Cluster Application
dc.subject
Hybrid Ventilation
dc.subject
Multi-Objective Optimization
dc.subject
Nsga-Ii
dc.subject
Thermal Comfort
dc.subject.classification
Otras Ingeniería Civil
dc.subject.classification
Ingeniería Civil
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-07T15:55:32Z
dc.journal.volume
154
dc.journal.pagination
283-294
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.journal.title
Energy and Buildings
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378778817318042
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enbuild.2017.08.002
Archivos asociados