Mostrar el registro sencillo del ítem

dc.contributor.author
Trolle, Thomas  
dc.contributor.author
Metushi, Imir G.  
dc.contributor.author
Greenbaum, Jason A.  
dc.contributor.author
Kim, Yohan  
dc.contributor.author
Sidney, John  
dc.contributor.author
Lund, Ole  
dc.contributor.author
Sette, Alessandro  
dc.contributor.author
Peters, Bjoern  
dc.contributor.author
Nielsen, Morten  
dc.date.available
2018-03-07T19:41:40Z  
dc.date.issued
2015-07  
dc.identifier.citation
Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; et al.; Automated benchmarking of peptide-MHC class i binding predictions; Oxford University Press; Bioinformatics (Oxford, England); 31; 13; 7-2015; 2174-2181  
dc.identifier.issn
1367-4803  
dc.identifier.uri
http://hdl.handle.net/11336/38180  
dc.description.abstract
Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Mhc  
dc.subject
Benchmark  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automated benchmarking of peptide-MHC class i binding predictions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-06T17:44:03Z  
dc.journal.volume
31  
dc.journal.number
13  
dc.journal.pagination
2174-2181  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Trolle, Thomas. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Metushi, Imir G.. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Lund, Ole. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos  
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.journal.title
Bioinformatics (Oxford, England)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btv123  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/31/13/2174/196331