Artículo
Sets which are not tube null and intersection properties of random measures
Fecha de publicación:
02/2015
Editorial:
Oxford University Press
Revista:
Journal of the London Mathematical Society
ISSN:
0024-6107
e-ISSN:
1469-7750
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that in ℝd there are purely unrectifiable sets of Hausdorff (and even box counting) dimension d - 1 which are not tube null, settling a question of Carbery, Soria and Vargas, and improving a number of results by the same authors and by Carbery. Our method extends also to 'convex tube null sets', establishing a contrast with a theorem of Alberti, Csörnyei and Preiss on Lipschitz-null sets. The sets we construct are random, and the proofs depend on intersection properties of certain random fractal measures with curves.
Palabras clave:
Tube Null
,
Random Measures
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Shmerkin, Pablo Sebastian; Suomala, Ville; Sets which are not tube null and intersection properties of random measures; Oxford University Press; Journal of the London Mathematical Society; 91; 2; 2-2015; 405-422
Compartir
Altmétricas