Mostrar el registro sencillo del ítem
dc.contributor.author
Bank, Bernd
dc.contributor.author
Giusti, Marc
dc.contributor.author
Heintz, Joos Ulrich
dc.contributor.author
Lecerf, Grégoire
dc.contributor.author
Matera, Guillermo
dc.contributor.author
Solernó, Pablo Luis
dc.date.available
2018-03-07T15:11:35Z
dc.date.issued
2015-01
dc.identifier.citation
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Lecerf, Grégoire; Matera, Guillermo; et al.; Degeneracy Loci and Polynomial Equation Solving; Springer; Foundations Of Computational Mathematics; 15; 1; 1-2015; 159-184
dc.identifier.issn
1615-3375
dc.identifier.uri
http://hdl.handle.net/11336/38112
dc.description.abstract
Let (Formula presented.) be a smooth, equidimensional, quasi-affine variety of dimension (Formula presented.) over (Formula presented.), and let (Formula presented.) be a (Formula presented.) matrix of coordinate functions of (Formula presented.), where (Formula presented.). The pair (Formula presented.) determines a vector bundle (Formula presented.) of rank (Formula presented.) over (Formula presented.). We associate with (Formula presented.) a descending chain of degeneracy loci of (Formula presented.) (the generic polar varieties of (Formula presented.) represent a typical example of this situation). The maximal degree of these degeneracy loci constitutes the essential ingredient for the uniform, bounded-error probabilistic pseudo-polynomial-time algorithm that we will design and that solves a series of computational elimination problems that can be formulated in this framework. We describe applications to polynomial equation solving over the reals and to the computation of a generic fiber of a dominant endomorphism of an affine space.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Degeneracy Locus
dc.subject
Degree of Varieties
dc.subject
Polynomial Equation Solving
dc.subject
Pseudo-Polynomial Complexity
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Degeneracy Loci and Polynomial Equation Solving
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-02T14:24:20Z
dc.identifier.eissn
1615-3383
dc.journal.volume
15
dc.journal.number
1
dc.journal.pagination
159-184
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Bank, Bernd. Universität zu Berlin; Alemania
dc.description.fil
Fil: Giusti, Marc. Laboratoire D'informatique de L'ecole Polytechnique; Francia
dc.description.fil
Fil: Heintz, Joos Ulrich. Universidad de Cantabria; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lecerf, Grégoire. Laboratoire D'informatique de L'ecole Polytechnique; Francia
dc.description.fil
Fil: Matera, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina
dc.description.fil
Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Foundations Of Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10208-014-9214-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10208-014-9214-z
Archivos asociados