Mostrar el registro sencillo del ítem

dc.contributor.author
Chara, Osvaldo  
dc.contributor.author
Brusch, Lutz  
dc.date.available
2018-03-06T19:02:05Z  
dc.date.issued
2015-04  
dc.identifier.citation
Chara, Osvaldo; Brusch, Lutz; Mathematical modelling of fluid transport and its regulation at multiple scales; Elsevier; Biosystems; 130; 4-2015; 1-10  
dc.identifier.issn
0303-2647  
dc.identifier.uri
http://hdl.handle.net/11336/38011  
dc.description.abstract
Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cell Volume Homeostasis  
dc.subject
Cyst Lumen  
dc.subject
Mathematical Model  
dc.subject
Osmosis  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mathematical modelling of fluid transport and its regulation at multiple scales  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-06T17:43:13Z  
dc.journal.volume
130  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chara, Osvaldo. Technische Universitat Dresden; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.description.fil
Fil: Brusch, Lutz. Technische Universitat Dresden; Alemania  
dc.journal.title
Biosystems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.biosystems.2015.02.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303264715000222