Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control

Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; Spohn, Andreas; Duriez, Thomas Pierre CornilIcon ; Cordier, Laurent; Noack, Bernd R.; Abel, Markus; Segond, Marc; Shaqarin, Tamir; Brunton, Steven L.
Fecha de publicación: 01/2015
Editorial: Springer
Revista: Flow Turbulence And Combustion
ISSN: 1386-6184
e-ISSN: 1573-1987
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Open- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control.
Palabras clave: Active Flow Control , Extremum Seeking , Genetic Programming , Machine Learning , Pod , Shear Flow , Turbulence
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.099Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/37726
URL: http://link.springer.com/article/10.1007/s10494-014-9581-1
DOI: http://dx.doi.org/10.1007/s10494-014-9581-1
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; et al.; Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control; Springer; Flow Turbulence And Combustion; 94; 1; 1-2015; 155-173
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES