Artículo
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control
Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; Spohn, Andreas; Duriez, Thomas Pierre Cornil
; Cordier, Laurent; Noack, Bernd R.; Abel, Markus; Segond, Marc; Shaqarin, Tamir; Brunton, Steven L.
Fecha de publicación:
01/2015
Editorial:
Springer
Revista:
Flow Turbulence And Combustion
ISSN:
1386-6184
e-ISSN:
1573-1987
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Open- and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control approaches, such as: adaptive extremum-seeking and in-time POD mode feedback control. In addition, we propose Machine Learning Control (MLC) as a model-free closed-loop control method. MLC arrives reproducibly at the near-optimal in-time control.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Parezanović, Vladimir; Laurentie, Jean Charles; Fourment, Carine; Delville, Joël; Bonnet, Jean-Paul; et al.; Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control; Springer; Flow Turbulence And Combustion; 94; 1; 1-2015; 155-173
Compartir
Altmétricas