Artículo
A Quantum Version of Spectral Decomposition Theorem of dynamical systems, quantum chaos hierarchy: Ergodic, mixing and exact
Fecha de publicación:
01/2015
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Chaos, Solitons And Fractals
ISSN:
0960-0779
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study Spectral Decomposition Theorem (Lasota and Mackey, 1985) and translate it to quantum language by means of the Wigner transform. We obtain a Quantum Version of Spectral Decomposition Theorem (QSDT) which enables us to achieve three distinct goals: First, to rank Quantum Ergodic Hierarchy levels (Castagnino and Lombardi, 2009, Gomez and Castagnino, 2014). Second, to analyze the classical limit in quantum ergodic systems and quantum mixing systems. And third, and maybe most important feature, to find a relevant and simple connection between the first three levels of Quantum Ergodic Hierarchy (ergodic, exact and mixing) and quantum spectrum. Finally, we illustrate the physical relevance of QSDT applying it to two examples: Microwave billiards (Stockmann, 1999, Stoffregen et al. 1995) and a phenomenological Gamow model type (Laura and Castagnino, 1998, Omnès, 1994).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Gomez, Ignacio Sebastián; Castagnino, Mario Alberto G. J.; A Quantum Version of Spectral Decomposition Theorem of dynamical systems, quantum chaos hierarchy: Ergodic, mixing and exact; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 70; 1; 1-2015; 99-116
Compartir
Altmétricas