Artículo
Structure of distributions generated by the scenery flow
Fecha de publicación:
01/2015
Editorial:
Wiley
Revista:
Journal Of The London Mathematical Society-second Series
ISSN:
0024-6107
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems that are obtained from magnifications of measures. We prove that any fractal distribution (FD) in the sense of Hochman is generated by a USM, which provides a converse to a regularity theorem on the structure of distributions generated by the scenery flow. We further show that the collection of FDs is closed under the weak topology and, moreover, is a Poulsen simplex, that is, extremal points are dense. We apply these to show that a Baire generic measure is as far as possible from being uniformly scaling: at almost all points, it has all FDs as tangent distributions.
Palabras clave:
Scenery Flow
,
Fractal Distribution
,
Cp-Process
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Käenmäki, Antti; Sahlsten, Tuomas; Shmerkin, Pablo Sebastian; Structure of distributions generated by the scenery flow; Wiley; Journal Of The London Mathematical Society-second Series; 91; 2; 1-2015; 464-494
Compartir
Altmétricas