Mostrar el registro sencillo del ítem

dc.contributor.author
Plastino, Ángel Ricardo  
dc.contributor.author
Souza, A. M. C.  
dc.contributor.author
Nobre, F. D.  
dc.contributor.author
Tsallis, C.  
dc.date.available
2018-02-27T19:55:58Z  
dc.date.issued
2014-12  
dc.identifier.citation
Plastino, Ángel Ricardo; Souza, A. M. C.; Nobre, F. D.; Tsallis, C.; Stationary and uniformly accelerated states in nonlinear quantum mechanics; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 90; 6; 12-2014  
dc.identifier.issn
1050-2947  
dc.identifier.uri
http://hdl.handle.net/11336/37333  
dc.description.abstract
We consider two kinds of solutions of a recently proposed field theory leading to a nonlinear Schrödinger equation exhibiting solitonlike solutions of the power-law form eqi(kx-wt), involving the q exponential function naturally arising within nonextensive thermostatistics [eqz≡[1+(1-q)z]1/(1-q), with e1z=ez]. These fundamental solutions behave like free particles, satisfying p=k, E=ω, and E=p2/2m (1≤q<2). Here we introduce two additional types of exact, analytical solutions of the aforementioned field theory. As a first step we extend the theory to situations involving a potential energy term, thus going beyond the previous treatment concerning solely the free-particle dynamics. Then we consider both bound, stationary states associated with a confining potential and also time-evolving states corresponding to a linear potential function. These types of solutions might be relevant for physical applications of the present nonlinear generalized Schrödinger equation. In particular, the stationary solution obtained shows an increase in the probability for finding the particle localized around a certain position of the well as one increases q in the interval 1≤q<2, which should be appropriate for physical systems where one finds a low-energy particle localized inside a confining potential.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nonlinear Schroedinger Equation  
dc.subject
Exact Solutions  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stationary and uniformly accelerated states in nonlinear quantum mechanics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-02-27T14:18:43Z  
dc.journal.volume
90  
dc.journal.number
6  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Souza, A. M. C.. Universidade Federal de Sergipe; Brasil. National Institute of Science and Technology for Complex Systems; Brasil  
dc.description.fil
Fil: Nobre, F. D.. National Institute of Science and Technology for Complex Systems; Brasil. Centro Brasileiro de Pesquisas Físicas; Brasil  
dc.description.fil
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil. Santa Fe Institute; Estados Unidos. National Institute of Science and Technology for Complex Systems; Brasil  
dc.journal.title
Physical Review A: Atomic, Molecular and Optical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevA.90.062134  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.062134