Mostrar el registro sencillo del ítem
dc.contributor.author
Beneyto, Pablo Alejandro
dc.contributor.author
Di Rado, Hector Ariel
dc.contributor.author
Mroginski, Javier Luis
dc.contributor.author
Awruch, Armando M.
dc.date.available
2018-02-27T17:18:52Z
dc.date.issued
2015-11
dc.identifier.citation
Beneyto, Pablo Alejandro; Di Rado, Hector Ariel; Mroginski, Javier Luis; Awruch, Armando M.; A versatile mathematical approach for environmental geomechanic modelling based on stress state decomposition; Elsevier Science Inc; Applied Mathematical Modelling; 39; 22; 11-2015; 6880-6896
dc.identifier.issn
0307-904X
dc.identifier.uri
http://hdl.handle.net/11336/37270
dc.description.abstract
The main goal of the present paper is to present a mathematical framework for modelling multi-phase non-saturated soil consolidation with pollutant transport based on stress state configurations with special emphasis in its versatility. Non-linear saturation and permeability dependence on suction for both water and pollutant transport is regarded. Furthermore, through the introduction of a suction saturation surface instead of simple suction saturation curves, the implementation of the saturation-suction coupling effect is considerably simplified. The achieved differential equation system is discretized within a Galerkin approach along with the finite element method implementation. A widespread set of practical situations is encompassed by simply setting certain coefficients of the discrete system of equation according to concrete problem conditions. When the model is coped with certain selected fringe conditions, the approach adaptability feature came up showing a robust performance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Finite Elements
dc.subject
Non Saturated Soil Consolidation
dc.subject
Pollutant Transport
dc.subject
Saturation-Suction Relationship
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A versatile mathematical approach for environmental geomechanic modelling based on stress state decomposition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-02-22T21:05:59Z
dc.journal.volume
39
dc.journal.number
22
dc.journal.pagination
6880-6896
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Beneyto, Pablo Alejandro. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Di Rado, Hector Ariel. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Awruch, Armando M.. Universidade Federal do Rio Grande do Sul; Brasil
dc.journal.title
Applied Mathematical Modelling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apm.2015.02.013
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0307904X15000864
Archivos asociados