Artículo
Multiple-time-scale framework for understanding the progression of Parkinson's disease
Andres, Daniela Sabrina
; Gomez, F.; Ferrari, F.A.S.; Cerquetti, Daniel; Merello, Marcelo Jorge
; Viana, R.; Stoop, R.
Fecha de publicación:
12/2014
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
1539-3755
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Parkinson's disease is marked by neurodegenerative processes that affect the pattern of discharge of basal ganglia neurons. The main features observed in the parkinsonian globus pallidus pars interna (GPi), a subdomain of the basal ganglia that is involved in the regulation of voluntary movement, are pathologically increased and synchronized neuronal activity. How these changes affect the implemented neuronal code is not well understood. Our experimental temporal structure-function analysis shows that in parkinsonian animals the rate-coding window of GPi neurons needed for the proper performance of voluntary actions is reduced. The model of the GPi network that we develop and discuss here reveals indeed that the size of the rate-coding window shrinks as the network activity increases and is expanded if the coupling strength among the neurons is increased. This leads to the novel interpretation that the pathological neuronal synchronization in Parkinson's disease in the GPi is the result of a collective attempt to counterbalance the shrinking of the rate-coding window due to increased activity in GPi neurons.
Palabras clave:
Basal Ganglia Neurons
,
Globus Pallidus
,
Parkinson'S Disease
,
Rate-Coding
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Andres, Daniela Sabrina; Gomez, F.; Ferrari, F.A.S.; Cerquetti, Daniel; Merello, Marcelo Jorge; et al.; Multiple-time-scale framework for understanding the progression of Parkinson's disease; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 90; 6; 12-2014
Compartir
Altmétricas