Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Solar radiation prediction using different techniques: model evaluation and comparison

Wang, Lunche; Kisi, Ozgur; Zounemat Kermani, Mohammad; Salazar, Germán ArielIcon ; Zhu, Zhongmin; Gong, Wei
Fecha de publicación: 08/2016
Editorial: Pergamon-Elsevier Science Ltd.
Revista: Renewable & Sustainable Energy Reviews
ISSN: 1364-0321
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Daily observations of meteorological parameters, air temperature, air pressure, relative humidity, water vapor pressure and sunshine duration hours observed at 12 stations in different climatic zones during 1961-2014 are reported for testing, validating and comparing different solar radiation models. Three types of Artificial Neural Network (ANN)methods, Multilayer Perceptron (MLP), Generalized Regression Neural Network (GRNN) and Radial Basis Neural Network (RBNN) are applied in this study for predicting the daily global solar radiation (Hg) using above meteorological variables as model inputs. The Bristow-Campbell model has also been improved by considering the factors influencing the incoming solar radiation, such as relative humidity, cloud cover, etc. The results indicate that there are large differences in model accuracies for each model at different stations, the ANN models can estimate daily Hg with satisfactory accuracy at most stations in different climate zones, and MLP and RBNN models provide better accuracy than the GRNN and IBC models, for example, the MAE and RMSE values range 1.53-2.29 and 1.94-3.27 MJ m-2 day-1, respectively for MLP model. The model performances also show some differences at different stations for each model, for example, the RMSE values from MLP model are 1.94 and 3.27 MJ m-2 day-1at NN and HZ stations, respectively. Meanwhile, ANN models underestimate few high radiation values at some stations, which may due to the differences in training and testing data ranges and distributions of the stations. Finally, the differences in model performances from different solar radiation models have been further analyzed.
Palabras clave: Solar Radiation , Generalized Regression Neural Network , Multilayer Perceptron , Radial Basis Neural Network , Improved Bristow-Campbell Model , Model Evaluation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 11.75Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/36778
DOI: http://dx.doi.org/10.1016/j.rser.2016.04.024
Colecciones
Articulos(INENCO)
Articulos de INST.DE INVEST.EN ENERGIA NO CONVENCIONAL
Citación
Wang, Lunche; Kisi, Ozgur; Zounemat Kermani, Mohammad; Salazar, Germán Ariel; Zhu, Zhongmin; et al.; Solar radiation prediction using different techniques: model evaluation and comparison; Pergamon-Elsevier Science Ltd.; Renewable & Sustainable Energy Reviews; 61; 8-2016; 384-397
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES