Artículo
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω)
Fecha de publicación:
08/2014
Editorial:
EDP Sciences
Revista:
Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique
ISSN:
0764-583X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Apel, Thomas; Lombardi, Ariel Luis; Winkler, Max; Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω); EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 4; 8-2014; 1117-1145
Compartir
Altmétricas