Mostrar el registro sencillo del ítem
dc.contributor.author
Benotti, Luciana
dc.contributor.author
Lau, Tessa
dc.contributor.author
Villalba, Martin
dc.date.available
2018-01-30T18:10:21Z
dc.date.issued
2014-10
dc.identifier.citation
Benotti, Luciana; Lau, Tessa; Villalba, Martin; Interpreting Natural Language Instructions Using Language, Vision, and Behavior; Association for Computing Machinery; ACM Transactions on Interactive Intelligent Systems; 4; 3; 10-2014
dc.identifier.issn
2160-6455
dc.identifier.uri
http://hdl.handle.net/11336/35034
dc.description.abstract
We define the problem of automatic instruction interpretation as follows. Given a natural language instruction, can we automatically predict what an instruction follower, such as a robot, should do in the environment to follow that instruction? Previous approaches to automatic instruction interpretation have required either extensive domain-dependent rule writing or extensive manually annotated corpora. This article presents a novel approach that leverages a large amount of unannotated, easy-to-collect data from humans interacting in a game-like environment. Our approach uses an automatic annotation phase based on artificial intelligence planning, for which two different annotation strategies are compared: one based on behavioral information and the other based on visibility information. The resulting annotations are used as training data for different automatic classifiers. This algorithm is based on the intuition that the problem of interpreting a situated instruction can be cast as a classification problem of choosing among the actions that are possible in the situation. Classification is done by combining language, vision, and behavior information. Our empirical analysis shows that machine learning classifiers achieve 77% accuracy on this task on available English corpora and 74% on similar German corpora. Finally, the inclusion of human feedback in the interpretation process is shown to boost performance to 92% for the English corpus and 90% for the German corpus.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Association for Computing Machinery
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Natural Language Interpretation
dc.subject
Multi-Modal Understanding
dc.subject
Action Recognition
dc.subject
Situated Virtual Agent
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Interpreting Natural Language Instructions Using Language, Vision, and Behavior
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-29T19:43:37Z
dc.journal.volume
4
dc.journal.number
3
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Benotti, Luciana. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lau, Tessa. Savioke; Estados Unidos
dc.description.fil
Fil: Villalba, Martin. Universitat Potsdam; Alemania. Universidad Nacional de Córdoba; Argentina
dc.journal.title
ACM Transactions on Interactive Intelligent Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dl.acm.org/citation.cfm?id=2629632
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1145/2629632
Archivos asociados